Matching Items (10)

Filtering by

Clear all filters

131314-Thumbnail Image.png

Automatic Recording of Children's Activity Within a Classroom: A Study of Levy Flights

Description

The diagnosis for an attention deficit/hyperactivity disorder (ADHD) in children is heavily based on teacher or parent opinion, and not on scientific evidence. This causes children to be wrongly diagnosed with a disorder and be prescribed medicine that they do

The diagnosis for an attention deficit/hyperactivity disorder (ADHD) in children is heavily based on teacher or parent opinion, and not on scientific evidence. This causes children to be wrongly diagnosed with a disorder and be prescribed medicine that they do not need to be taking. This paper discusses a project that was completed for the Child Study Lab (CSL) preschool at Arizona State University (ASU), in which children’s activity within a classroom was automatically recorded using ultra-wideband technology. This project’s goal was to gather location data on the children in the CSL and analyze and assess the collected data for any patterns of behavior. The hope was that if a child’s data displayed a pattern that strayed from the norm, that this analysis could pose as a more objective way to indicate that a child may have an attention deficit problem. Fractal Dimensions and Levy Flights were researched and applied to the data analysis portion of this project.

Contributors

Agent

Created

Date Created
2020-05

148445-Thumbnail Image.png

Protection of Flash Memory in the Space Environment

Description

This is a test plan document for Team Aegis' capstone project that has the goal of mitigating single event upsets in NAND flash memory caused by space radiation.

Contributors

Agent

Created

Date Created
2021-05

148467-Thumbnail Image.png

Application of See-Through Car Pillars in the Automobile Industry

Description

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first half of the paper provides the motivation, design and progress of the project, <br/>while the latter half provides a literature survey on current automobile trends, the viability of the<br/>See-Through Car Pillar as a product in the market through case studies, and alternative designs and <br/>technologies that also might address the problem statement.

Contributors

Agent

Created

Date Created
2021-05

148195-Thumbnail Image.png

Simulation and Design of Electrochemical Dendrites for Physically Unclonable Security Tags

Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

Contributors

Agent

Created

Date Created
2021-05

150219-Thumbnail Image.png

Film bulk acoustic resonators of high quality factors in liquid environments for biosensing applications

Description

Micro-electro-mechanical systems (MEMS) film bulk acoustic resonator (FBAR) demonstrates label-free biosensing capabilities and is considered to be a promising alternative of quartz crystal microbalance (QCM). FBARs achieve great success in vacuum, or in the air, but find limited applications in

Micro-electro-mechanical systems (MEMS) film bulk acoustic resonator (FBAR) demonstrates label-free biosensing capabilities and is considered to be a promising alternative of quartz crystal microbalance (QCM). FBARs achieve great success in vacuum, or in the air, but find limited applications in liquid media because squeeze damping significantly degrades quality factor (Q) and results in poor frequency resolution. A transmission-line model shows that by confining the liquid in a thickness comparable to the acoustic wavelength of the resonator, Q can be considerably improved. The devices exhibit damped oscillatory patterns of Q as the liquid thickness varies. Q assumes its maxima and minima when the channel thickness is an odd and even multiple of the quarter-wavelength of the resonance, respectively. Microfluidic channels are integrated with longitudinal-mode FBARs (L-FBARs) to realize this design; a tenfold improvement of Q over fully-immersed devices is experimentally verified. Microfluidic integrated FBAR sensors have been demonstrated for detecting protein binding in liquid and monitoring the Vroman effect (the competitive protein adsorption behavior), showing their potential as a promising bio-analytical tool. A contour-mode FBAR (C-FBAR) is developed to further improve Q and to alleviate the need for complex integration of microfluidic channels. The C-FBAR consists of a suspended piezoelectric ring made of aluminum nitride and is excited in the fundamental radial-extensional mode. By replacing the squeeze damping with shear damping, high Qs (189 in water and 77 in human whole blood) are obtained in semi-infinite depth liquids. The C-FBAR sensors are characterized by aptamer - thrombin binding pairs and aqueous glycerine solutions for mass and viscosity sensing schemes, respectively. The C-FBAR sensor demonstrates accurate viscosity measurement from 1 to 10 centipoise, and can be deployed to monitor in-vitro blood coagulation processes in real time. Results show that its resonant frequency decreases as the viscosity of the blood increases during the fibrin generation process after the coagulation cascade. The coagulation time and the start/end of the fibrin generation are quantitatively determined, showing the C-FBAR can be a low-cost, portable yet reliable tool for hemostasis diagnostics.

Contributors

Agent

Created

Date Created
2011

148121-Thumbnail Image.png

NASA Psyche Mission:Robotic Explorer for Hypothesized Surfaces: Command and Data Handling Enhancements for Increased Data Security

Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

Contributors

Agent

Created

Date Created
2021-05

134797-Thumbnail Image.png

Virtual Office Assistant

Description

With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or

With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to inexpensive and not efficient. This leaves a low cost niche into the market of a virtual office assistant or manager to display messages and to help direct people in obtaining contact information. The development of a low cost solution revolves around the software needed to solve the various problems an accessible and user friendly Virtual Interface in which the owner of the Virtual Office Manager/Assistant can communicate to colleagues who are at standby outside of the owner's office and vice versa. This interface will be allowing the owner to describe the status pertaining to their absence or any other message sent to the interface. For example, the status of the owner's work commute can be described with a simple "Running Late" phrase or a message like "Busy come back in 10 minutes". In addition, any individual with an interest to these entries will have the opportunity to respond back because the device will provide contact information. When idle, the device will show supplemental information such as the owner's calendar and name. The scope of this will be the development and testing of solutions to achieve these goals.

Contributors

Created

Date Created
2016-12

152978-Thumbnail Image.png

Static behavior of chalcogenide based programmable metallization cells

Description

Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A

Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization.

To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.

The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior.

The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.

Contributors

Agent

Created

Date Created
2014

152867-Thumbnail Image.png

VerilogA modelling of programmable metallization cells

Description

There is an ever growing need for larger memories which are reliable and fast. New technologies to implement non-volatile memories which are large, fast, compact and cost-efficient are being studied extensively. One of the most promising technologies being developed is

There is an ever growing need for larger memories which are reliable and fast. New technologies to implement non-volatile memories which are large, fast, compact and cost-efficient are being studied extensively. One of the most promising technologies being developed is the resistive RAM (ReRAM). In ReRAM the resistance of the device varies with the voltage applied across it. Programmable metallization cells (PMC) is one of the devices belonging to this category of non-volatile memories.

In order to advance the development of these devices, there is a need to develop simulation models which replicate the behavior of these devices in circuits. In this thesis, a verilogA model for the PMC has been developed. The behavior of the model has been tested using DC and transient simulations. Experimental data obtained from testing PMC devices fabricated at Arizona State University have been compared to results obtained from simulation.

A basic memory cell known as the 1T 1R cell built using the PMC has also been simulated and verified. These memory cells have the potential to be building blocks of large scale memories. I believe that the verilogA model developed in this thesis will prove to be a powerful tool for researchers and circuit developers looking to develop non-volatile memories using alternative technologies.

Contributors

Agent

Created

Date Created
2014

153606-Thumbnail Image.png

Retention of programmable metallization cells during ionizing radiation exposure

Description

Non-volatile memory (NVM) has become a staple in the everyday life of consumers. NVM manifests inside cell phones, laptops, and most recently, wearable tech such as smart watches. NAND Flash has been an excellent solution to conditions requiring fast, compact

Non-volatile memory (NVM) has become a staple in the everyday life of consumers. NVM manifests inside cell phones, laptops, and most recently, wearable tech such as smart watches. NAND Flash has been an excellent solution to conditions requiring fast, compact NVM. Current technology nodes are nearing the physical limits of scaling, preventing flash from improving. To combat the limitations of flash and to appease consumer demand for progressively faster and denser NVM, new technologies are needed. One possible candidate for the replacement of NAND Flash is programmable metallization cells (PMC). PMC are a type of resistive memory, meaning that they do not rely on charge storage to maintain a logic state. Depending on their application, it is possible that devices containing NVM will be exposed to harsh radiation environments. As part of the process for developing a novel memory technology, it is important to characterize the effects irradiation has on the functionality of the devices.

This thesis characterizes the effects that ionizing γ-ray irradiation has on the retention of the programmed resistive state of a PMC. The PMC devices tested used Ge30Se70 doped with Ag as the solid electrolyte layer and were fabricated by the thesis author in a Class 100 clean room. Individual device tiles were wire bonded into ceramic packages and tested in a biased and floating contact scenario.

The first scenario presented shows that PMC devices are capable of retaining their programmed state up to the maximum exposed total ionizing dose (TID) of 3.1 Mrad(Si). In this first scenario, the contacts of the PMC devices were left floating during exposure. The second scenario tested shows that the PMC devices are capable of retaining their state until the maximum TID of 10.1 Mrad(Si) was reached. The contacts in the second scenario were biased, with a 50 mV read voltage applied to the anode contact. Analysis of the results show that Ge30Se70 PMC are ionizing radiation tolerant and can retain a programmed state to a higher TID than NAND Flash memory.

Contributors

Agent

Created

Date Created
2015