Matching Items (706)
Filtering by

Clear all filters

156118-Thumbnail Image.png
Description
In this work, the development of a novel and a truly in-shoe force measurement system is reported. The device consists of a shoe insole with six thin film piezoresistive sensors and the main circuit board. The piezoresistive sensors are used for the measurement of plantar pressure during daily human activities.

In this work, the development of a novel and a truly in-shoe force measurement system is reported. The device consists of a shoe insole with six thin film piezoresistive sensors and the main circuit board. The piezoresistive sensors are used for the measurement of plantar pressure during daily human activities. The motion sensor mounted on the main circuit board captures kinematic data. In addition, the main circuit board is responsible for the wireless transmission of the data from all the sensors in real-time using BLE protocol. It is housed within the midsole of the shoe, under the medial arch of the foot. The real-time quantitative data and its analyses, enables athletic performance evaluation, biomedical ailment detection, and everyday fitness tracking. A test subject walked 20 steps on a flat surface at a comfortable speed wearing a shoe fitted with the insole and the main circuit board. Measurements were captured using a BLE enabled laptop and the test results were validated for accuracy. From the real-time data captured, the number of steps walked, the speed and the plantar pressure applied can be clearly established. Moreover, additional kinematic data from the motion sensor was captured. Further processing of kinematic data using techniques such as machine learning is essential to get meaningful inferences.
ContributorsBadarinath, Abhishek (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
156051-Thumbnail Image.png
Description
The overall purpose of this investigation is to examine the differences between the Best Value Approach and Best Value Procurement, and to test if the Best Value Approach can be used for the successful delivery of roofing systems. Best Value Procurement has been run on delivering roofing services for many

The overall purpose of this investigation is to examine the differences between the Best Value Approach and Best Value Procurement, and to test if the Best Value Approach can be used for the successful delivery of roofing systems. Best Value Procurement has been run on delivering roofing services for many years. However, in the last three years, it was discovered that Best Value Procurement was not sustainable and filled with risk. To examine if the Best Value Approach can be used for the successful delivery of roofing systems, the researcher identified a client in need of a new 70,000 sq. ft. industrial roof installation at their facility in the Phoenix Metropolitan area. The client willingly agreed to test the Best Value Approach as the project delivery method. The results of the project were documented, and they show that the Best Value Approach can be successfully implemented on an industrial roofing project with high performance results. The Best Value Approach’s advantage over Best Value Procurement is it addresses risk using “level of expertise” and cost to select a vendor. This paper identifies the differences between the methodologies and shows how the Best Value Approach can be an optimal approach for other roofing projects.
ContributorsBills, Andrew Marius (Author) / Sullivan, Ken (Thesis advisor) / Badger, William (Thesis advisor) / Kashiwagi, Jacob (Committee member) / Arizona State University (Publisher)
Created2017
168450-Thumbnail Image.png
Description
As the construction industry in Saudi Arabia was on its way to thriving again. Their growth was due to the unprecedented volume of planned projects such as large-scale and unique projects. Suddenly, the world was faced with one of the most disrupting events in the last century which had a

As the construction industry in Saudi Arabia was on its way to thriving again. Their growth was due to the unprecedented volume of planned projects such as large-scale and unique projects. Suddenly, the world was faced with one of the most disrupting events in the last century which had a devastating impact on the construction industry specifically. This paper explores mainly the impact of the COVID-19 pandemic on construction projects in Saudi Arabia. Particularly, this paper explores how the pandemic and its related events contributed to the projects' schedule disturbances. This is because most of the projects rely on manpower and supply chains which were heavily disrupted due to the protective measures. For that, a study was conducted to evaluate the impact on the construction projects in Saudi Arabia, to what extent the schedule projects were affected, and what were the main reasons for the schedule delays. The research relied on a field survey and schedule analysis for 12 projects which resulted in identifying several causes of delays and the delayed durations that the projects in Saudi Arabia were facing. This research allows those in construction fields to identify the main causes of delays in order to avoid or minimize the impact of these issues on future projects.
ContributorsObeid, Muhammad Hasan Hani (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2021
Description

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is a flexible 3D printed beam being actively driven by a servo motor. Using the simulation, we also analyze different parameters for these spines to maximize the linear speed of the system.

ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.

ContributorsJohnson, Kayla (Author) / Cardinale, Matthew (Co-author) / Murthy, Raghavendra (Thesis director) / Singh, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.

ContributorsCardinale, Matthew (Author) / Johnson, Kayla (Co-author) / Murthy, Raghavendra (Thesis director) / Singh, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
157877-Thumbnail Image.png
Description
A literature search revealed that previous research on the Attentional Blink (AB) has not examined the role of salience in AB results. I examined how salience affects the AB through multiple forms and degrees of salience in target 1 (T1) and target 2 (T2) stimuli. When examining increased size as

A literature search revealed that previous research on the Attentional Blink (AB) has not examined the role of salience in AB results. I examined how salience affects the AB through multiple forms and degrees of salience in target 1 (T1) and target 2 (T2) stimuli. When examining increased size as a form of salience, results showed a more salient T2 increased recall, attenuating the AB. A more salient T1 did not differ from the control, suggesting the salience (increased size) of T2 is an important factor in the AB, while salience (increased size) of T1 does not affect the AB. Additionally, the differences in target size (50% or 100% larger) were not significantly different, showing size differences at these intervals do not affect AB results. To further explore the lack of difference in results when T1 is larger in size, I examined dynamic stimuli used as T1. T1 stimuli were presented as looming or receding. When T1 was presented as looming or receding, the AB was attenuated (T2 recall at lag 2 was significantly greater). Additionally, T2 recall was significantly worse at lags three and four (showing a larger decrease directly following the attenuated AB). When comparing looming and receding against each other, at lag 2 (when recall accuracy at its lowest) looming increased recall significantly more than receding stimuli. This is expected to be due to the immediate attentional needs related to looming stimuli. Overall, the results showed T2 salience in the form of size significantly increases recall accuracy while T1 size salience does not affect the AB results. With that, dynamic T1 stimuli increase recall accuracy at early lags (lag 2) while it decreases recall accuracy at later lags (lags 3 and 4). This result is found when the stimuli are presented at a larger size (stimuli appearing closer), suggesting the more eminent need for attention results in greater effects on the AB.
ContributorsLafko, Stacie (Author) / Becker, Vaughn (Thesis advisor) / Branaghan, Russell (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2019
156204-Thumbnail Image.png
Description
The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness and devices that are bulky, costly, and have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This research project presents a portable cost-effective soft robotic haptic device with a broad stiffness range that is adjustable and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator as well as the structure of the haptic interface. It is made with interchangeable soft elastomeric sleeves that can be customized to include materials of varying stiffness to increase or decrease the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance with the stiffness the user specifies. A preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. Results indicate that the region of controllable stiffness was in the center of the device, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. Finally, a qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.
ContributorsSebastian, Frederick (Author) / Polygerinos, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Fu, Qiushi (Committee member) / Arizona State University (Publisher)
Created2018
166190-Thumbnail Image.png
Description
This paper documents the design, analysis, and construction of a towing tank suitable for experimental studies within a Reynolds number less than approximately 500,000, for test models of varying shape. The design and manufacturing of a towing tank provides Arizona State University with laboratory equipment for experimental fluid mechanics. The

This paper documents the design, analysis, and construction of a towing tank suitable for experimental studies within a Reynolds number less than approximately 500,000, for test models of varying shape. The design and manufacturing of a towing tank provides Arizona State University with laboratory equipment for experimental fluid mechanics. The design consists of a 3-meter-long, 0.5-meter-wide, and 0.8-meter-high cast acrylic tank with aluminum welded-frame supports. There is a pulling mechanism consisting of a belt drive and linear rail guide system that will be positioned on top of the tank. The pulling mechanism is currently in the prototype development stage. The prototype serves as a proof of concept for the final design, as data has been collected and analyzed using MATLAB, resolving the drag force of a submerged test model. This paper demonstrates the design process, prototype development, and construction of the towing tank. The original goal of this research was to answer questions about optimization of a swimmer’s technique by providing strong experimental results and deep analysis of the factors affecting performance. However, there were tasks along the way that shifted the focus from experimentation and analysis to design and manufacturing.
ContributorsAll, Isabella (Author) / Wells, Valana (Thesis director) / Pathikonda, Gokul (Committee member) / Hota , Piyush (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
156946-Thumbnail Image.png
Description
Across a wide variety of sports, our visual abilities have been proven to profoundly impact performance. Numerous studies have examined the effects of visual training in athletes and have found supporting evidence that performance can be enhanced through vision training. The present case study aimed to expand on research in

Across a wide variety of sports, our visual abilities have been proven to profoundly impact performance. Numerous studies have examined the effects of visual training in athletes and have found supporting evidence that performance can be enhanced through vision training. The present case study aimed to expand on research in the field of stroboscopic visual training. To do so, twelve softball players, half novice and half expert, took part in this study. Six underwent a four-week stroboscopic training program and six underwent a four-week non-stroboscopic training program. The quantitative data collected in this case study showed that training group (stroboscopic vs. non-stroboscopic) and skill level (novice vs expert) of each softball player were significant factors that contributed to how much their fielding performance increased. Qualitative data collected in this study support these findings as well as players’ subjective reports that their visual and perceptual skills had increased. Players trained in the stroboscopic group reported that they felt like they could “focus” on the ball better and “predict” where the ball would be. Future research should examine more participants across a longer training period and determine if more data would yield even greater significance for stroboscopic training.
ContributorsEdgerton, Lindsey Ann (Author) / Gray, Robert (Thesis advisor) / Branaghan, Russ (Committee member) / Roscoe, Rod (Committee member) / Arizona State University (Publisher)
Created2018