Matching Items (170)
Filtering by

Clear all filters

152543-Thumbnail Image.png
Description
The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage

The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage SST is analyzed and applied. A simplified average model of the three-stage SST that is suitable for simulation in real time digital simulator (RTDS) has been developed in this study. The model is also useful for general time-domain power system analysis and simulation. The proposed simplified av-erage model has been validated in MATLAB and PLECS. The accuracy of the model has been verified through comparison with the cycle-by-cycle average (CCA) model and de-tailed switching model. These models are also implemented in PSCAD, and a special strategy to implement the phase shift modulation has been proposed to enable the switching model simulation in PSCAD. The implementation of the CHIL test environment of the SST in RTDS is described in this report. The parameter setup of the model has been discussed in detail. One of the dif-ficulties is the choice of the damping factor, which is revealed in this paper. Also the grounding of the system has large impact on the RTDS simulation. Another problem is that the performance of the system is highly dependent on the switch parameters such as voltage and current ratings. Finally, the functionalities of the SST have been realized on the platform. The distributed energy storage interface power injection and reverse power flow have been validated. Some limitations are noticed and discussed through the simulation on RTDS.
ContributorsJiang, Youyuan (Author) / Ayyanar, Raja (Thesis advisor) / Holbert, Keith E. (Committee member) / Chowdhury, Srabanti (Committee member) / Arizona State University (Publisher)
Created2014
152321-Thumbnail Image.png
Description
In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real

In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real time model for market operations and other critical analysis functions in the EMS. Tradi-tionally, SE is run with data obtained only from supervisory control and data acquisition (SCADA) devices and systems. However, more emphasis on improving the performance of SE drives the inclusion of phasor measurement units (PMUs) into SE input data. PMU measurements are claimed to be more accurate than conventional measurements and PMUs `time stamp' measurements accurately. These widely distributed devices meas-ure the voltage phasors directly. That is, phase information for measured voltages and currents are available. PMUs provide data time stamps to synchronize measurements. Con-sidering the relatively small number of PMUs installed in contemporary power systems in North America, performing SE with only phasor measurements is not feasible. Thus a hy-brid SE, including both SCADA and PMU measurements, is the reality for contemporary power system SE. The hybrid approach is the focus of a number of research papers. There are many practical challenges in incorporating PMUs into SE input data. The higher reporting rates of PMUs as compared with SCADA measurements is one of the salient problems. The disparity of reporting rates raises a question whether buffering the phasor measurements helps to give better estimates of the states. The research presented in this thesis addresses the design of data buffers for PMU data as used in SE applications in electric power systems. The system theoretic analysis is illustrated using an operating electric power system in the southwest part of the USA. Var-ious instances of state estimation data have been used for analysis purposes. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsMurugesan, Veerakumar (Author) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152326-Thumbnail Image.png
Description
Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected sunlight is converted more efficiently through two types of technologies:

Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected sunlight is converted more efficiently through two types of technologies: concentrated solar photovoltaics (CSPV) and concentrated solar thermal power (CSTP) generation. In this thesis, these two technologies were evaluated in terms of system construction, performance characteristics, design considerations, cost benefit analysis and their field experience. The two concentrated solar power generation systems were implemented with similar solar concentrators and solar tracking systems but with different energy collecting and conversion components: the CSPV system uses high efficiency multi-junction solar cell modules, while the CSTP system uses a boiler -turbine-generator setup. The performances are calibrated via the experiments and evaluation analysis.
ContributorsJin, Zhilei (Author) / Hui, Yu (Thesis advisor) / Ayyanar, Raja (Committee member) / Rodriguez, Armando (Committee member) / Arizona State University (Publisher)
Created2013
153486-Thumbnail Image.png
Description
Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare

Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare and contrast system deployment options for suitability in a variety of environments and allows for consistent treatment of resilience across domains. Systems engineers, whether planning future infrastructures or managing ecosystems, are increasingly asked to deliver resilient systems. Quantum resilience provides a way forward that allows specific resilience requirements to be specified, validated, and verified.

Quantum resilience makes two very important claims. First, resilience cannot be characterized without recognizing both the system and the valued function it provides. Second, resilience is not about disturbances, insults, threats, or perturbations. To avoid crippling infinities, characterization of resilience must be accomplishable without disturbances in mind. In light of this, quantum resilience defines resilience as the extent to which a system delivers its valued functions, and characterizes resilience as a function of system productivity and complexity. System productivity vis-à-vis specified “valued functions” involves (1) the quanta of the valued function delivered, and (2) the number of systems (within the greater system) which deliver it. System complexity is defined structurally and relationally and is a function of a variety of items including (1) system-of-systems hierarchical decomposition, (2) interfaces and connections between systems, and (3) inter-system dependencies.

Among the important features of quantum resilience is that it can be implemented in any system engineering tool that provides sufficient design and specification rigor (i.e., one that supports standards like the Lifecycle and Systems Modeling languages and frameworks like the DoD Architecture Framework). Further, this can be accomplished with minimal software development and has been demonstrated in three model-based system engineering tools, two of which are commercially available, well-respected, and widely used. This pragmatic approach assures transparency and consistency in characterization of resilience in any discipline.
ContributorsRoberts, Thomas Wade (Author) / Allenby, Braden (Thesis advisor) / Chester, Mikhail (Committee member) / Anderies, John M (Committee member) / Arizona State University (Publisher)
Created2015
153122-Thumbnail Image.png
Description
The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of

The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of the key applications of smart grid. Demand response today is envisioned as a method in which the price could be communicated to the consumers and they may shift their loads from high price periods to the low price periods. The development and deployment of the FREEDM system necessitates controls of energy and power at the point of end use.

In this thesis, the main objective is to develop the control model of the Energy Management System (EMS). The energy and power management in the FREEDM system is digitally controlled therefore all signals containing system states are discrete. The EMS is modeled as a discrete closed loop transfer function in the z-domain. A breakdown of power and energy control devices such as EMS components may result in energy con-sumption error. This leads to one of the main focuses of the thesis which is to identify and study component failures of the designed control system. Moreover, H-infinity ro-bust control method is applied to ensure effectiveness of the control architecture. A focus of the study is cyber security attack, specifically bad data detection in price. Test cases are used to illustrate the performance of the EMS control design, the effect of failure modes and the application of robust control technique.

The EMS was represented by a linear z-domain model. The transfer function be-tween the pricing signal and the demand response was designed and used as a test bed. EMS potential failure modes were identified and studied. Three bad data detection meth-odologies were implemented and a voting policy was used to declare bad data. The run-ning mean and standard deviation analysis method proves to be the best method to detect bad data. An H-infinity robust control technique was applied for the first time to design discrete EMS controller for the FREEDM system.
ContributorsMusani, Aatif (Author) / Heydt, Gerald (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014
153057-Thumbnail Image.png
Description
Due to increasing integration of renewable resources in the power grid, an efficient high power transmission system is needed in the near future to transfer energy from remote locations to the load centers. Gas Insulated Transmission Line (GIL) is a specialized high power transmission system, designed by Siemens, for applications

Due to increasing integration of renewable resources in the power grid, an efficient high power transmission system is needed in the near future to transfer energy from remote locations to the load centers. Gas Insulated Transmission Line (GIL) is a specialized high power transmission system, designed by Siemens, for applications requiring direct burial or vertical installation of the transmission line. GIL uses SF6 as an insulating medium. Due to unavoidable gas leakages and high global warming potential of SF6, there is a need to replace this insulating gas by some other possible alternative. Insulating foam materials are characterized by excellent dielectric properties as well as their reduced weight. These materials can find their application in GIL as high voltage insulators. Syntactic foam is a polymer based insulating foam. It consists of a large number of microspheres embedded in a polymer matrix.

The work in this thesis deals with the development of the selection proce-dure for an insulating foam for its application in GIL. All the steps in the process are demonstrated considering syntactic foam as an insulator. As the first step of the procedure, a small representative model of the insulating foam is built in COMSOL Multiphysics software with the help of AutoCAD and Excel VBA to analyze electric field distribution for the application of GIL. The effect of the presence of metal particles on the electric field distribution is also observed. The AC voltage withstand test is performed on the insulating foam samples according to the IEEE standards. The effect of the insulating foam on electrical parameters as well as transmission characteristics of the line is analyzed as the last part of the thesis. The results from all the simulations and AC voltage withstand test are ob-served to predict the suitability of the syntactic foam as an insulator in GIL.
ContributorsPendse, Harshada Ganesh (Author) / Karady, George G. (Thesis advisor) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
150094-Thumbnail Image.png
Description
The high penetration of photovoltaic (PV) both at the utility and at the distribu-tion levels, has raised concerns about the reliability of grid-tied inverters of PV power systems. Inverters are generally considered as the weak link in PV power systems. The lack of a dedicated qualification/reliability standard for PV inverters

The high penetration of photovoltaic (PV) both at the utility and at the distribu-tion levels, has raised concerns about the reliability of grid-tied inverters of PV power systems. Inverters are generally considered as the weak link in PV power systems. The lack of a dedicated qualification/reliability standard for PV inverters is a main barrier in realizing higher level of confidence in reliability. Development of a well-accepted design qualification standard specifically for PV inverters will help pave the way for significant improvement in reliability and performance of inverters across the entire industry. The existing standards for PV inverters such as UL 1741 and IEC 62109-1 primarily focus on safety. IEC 62093 discusses inverter qualification but it includes all the balance of sys-tem components and therefore not specific to PV inverters. There are other general stan-dards for distributed generators including the IEEE1547 series of standards which cover major concerns like utility integration but they are not dedicated to PV inverters and are not written from a design qualification point of view. In this thesis, some of the potential requirements for a design qualification standard for PV inverters are addressed. The IEC 62093 is considered as a guideline and the possible inclusions in the framework for a dedicated design qualification standard of PV inverter are discussed. The missing links in existing PV inverter related standards are identified by performing gap analysis. Dif-ferent requirements of small residential inverters compared to large utility-scale systems, and the emerging requirements on grid support features are also considered. Electric stress test is found to be the key missing link and one of the electric stress tests, the surge withstand test is studied in detail. The use of the existing standards for surge withstand test of residential scale PV inverters is investigated and a method to suitably adopt these standards is proposed. The proposed method is studied analytically and verified using simulation. A design criterion for choosing the switch ratings of the inverter that can per-form reliably under the surge environment is derived.
ContributorsAlampoondi Venkataramanan, Sai Balasubramanian (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Arizona State University (Publisher)
Created2011
151244-Thumbnail Image.png
Description
The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible

The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible and controllable loads, bidirectional communications using smart meters and other technologies. Sensory technology may be utilized as a tool that enhances operation including operation of the distribution system. Addressing this point, a distribution system state estimation algorithm is developed in this thesis. The state estimation algorithm developed here utilizes distribution system modeling techniques to calculate a vector of state variables for a given set of measurements. Measurements include active and reactive power flows, voltage and current magnitudes, phasor voltages with magnitude and angle information. The state estimator is envisioned as a tool embedded in distribution substation computers as part of distribution management systems (DMS); the estimator acts as a supervisory layer for a number of applications including automation (DA), energy management, control and switching. The distribution system state estimator is developed in full three-phase detail, and the effect of mutual coupling and single-phase laterals and loads on the solution is calculated. The network model comprises a full three-phase admittance matrix and a subset of equations that relates measurements to system states. Network equations and variables are represented in rectangular form. Thus a linear calculation procedure may be employed. When initialized to the vector of measured quantities and approximated non-metered load values, the calculation procedure is non-iterative. This dissertation presents background information used to develop the state estimation algorithm, considerations for distribution system modeling, and the formulation of the state estimator. Estimator performance for various power system test beds is investigated. Sample applications of the estimator to Smart Grid systems are presented. Applications include monitoring, enabling demand response (DR), voltage unbalance mitigation, and enhancing voltage control. Illustrations of these applications are shown. Also, examples of enhanced reliability and restoration using a sensory based automation infrastructure are shown.
ContributorsHaughton, Daniel Andrew (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2012
153938-Thumbnail Image.png
Description
Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of

Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of these shunt capacitors may create resonance conditions in response to harmonic voltages and currents. Such resonance, if it occurs, may create problematic issues in the system. It is main objective of this thesis to identify potential problematic effects that could occur after placing new shunt capacitors at selected buses in the Arizona network. Part of the objective is to create a systematic plan for avoidance of resonance issues.

For this study, a method of capacitance scan is proposed. The bus admittance matrix is used as a model of the networked transmission system. The calculations on the admittance matrix were done using Matlab. The test bed is the actual transmission system in Arizona; however, for proprietary reasons, bus names are masked in the thesis copy in-tended for the public domain. The admittance matrix was obtained from data using the PowerWorld Simulator after equivalencing the 2016 summer peak load (planning case). The full Western Electricity Coordinating Council (WECC) system data were used. The equivalencing procedure retains only the Arizona portion of the WECC.

The capacitor scan results for single capacitor placement and multiple capacitor placement cases are presented. Problematic cases are identified in the form of ‘forbidden response. The harmonic voltage impact of known sources of harmonics, mainly large scale HVDC sources, is also presented.

Specific key results for the study indicated include:

• The forbidden zones obtained as per the IEEE 519 standard indicates the bus 10 to be the most problematic bus.

• The forbidden zones also indicate that switching values for the switched shunt capacitor (if used) at bus 3 should be should be considered carefully to avoid resonance condition from existing.

• The highest sensitivity of 0.0033 per unit for HVDC sources of harmonics was observed at bus 7 when all the HVDC sources were active at the same time.
ContributorsPatil, Hardik U (Author) / Heydt, Gerald T (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
156469-Thumbnail Image.png
Description
The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals

The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals who think for a living express feelings of stress about their ability to respond and fear missing critical tasks or information as they attempt to wade through all the electronic communication that floods their inboxes. Although many electronic communication tools compete for the attention of the contemporary knowledge worker, most professionals use an electronic personal information management (PIM) system, more commonly known as an e-mail application and often the ubiquitous Microsoft Outlook program. The aim of this research was to provide knowledge workers with solutions to manage the influx of electronic communication that arrives daily by studying the workers in their working environment. This dissertation represents a quest to understand the current strategies knowledge workers use to manage their e-mail, and if modification of e-mail management strategies can have an impact on productivity and stress levels for these professionals. Today’s knowledge workers rarely work entirely alone, justifying the importance of also exploring methods to improve electronic communications within teams.
ContributorsCounts, Virginia (Author) / Parrish, Kristen (Thesis advisor) / Allenby, Braden (Thesis advisor) / Landis, Amy (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018