Matching Items (18)

Filtering by

Clear all filters

148501-Thumbnail Image.png

The Detrimental Effects of Improvised Pelvic Circumferential Compression Device Modifications for Femoral Artery Access

Description

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs do not allow vital access to this artery and in attempts to gain access, medical professionals and emergency care providers choose to cut into the PCCDs or place them in suboptimal positions with unknown downstream effects. We researched the effects on surface pressure and the overall pressure distribution created by the PCCDs when they are modified or placed incorrectly on the patient. In addition, we investigated the effects of those misuses on pelvic fracture reduction, a key parameter in stabilizing the patient during critical care. We hypothesized that incorrectly placing or modifying the PCCD will result in increased surface pressure and decreased fracture reduction. Our mannequin studies show that for SAM Sling and T-POD, surface pressure increases if a PCCD is incorrectly placed or modified, in support of our hypothesis. However, opposite results occurred for the Pelvic Binder, where the correctly placed PCCD had higher surface pressure when compared to the incorrectly placed or modified PCCD. Additionally, pressure distribution was significantly affected by the modification of the PCCDs. The cadaver lab measurements show that modifying or incorrectly placing the PCCDs significantly limits their ability to reduce the pelvic fracture. These results suggest that while modifying or incorrectly placing PCCDs allows access to the femoral artery, there are potentially dangerous effects to the patient including increased surface pressures and limited fracture reduction.

Contributors

Agent

Created

Date Created
2021-05

148502-Thumbnail Image.png

The Detrimental Effects of Improvised Pelvic Circumferential Compression Device Modifications for Femoral Artery Access

Description

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs do not allow vital access to this artery and in attempts to gain access, medical professionals and emergency care providers choose to cut into the PCCDs or place them in suboptimal positions with unknown downstream effects. We researched the effects on surface pressure and the overall pressure distribution created by the PCCDs when they are modified or placed incorrectly on the patient. In addition, we investigated the effects of those misuses on pelvic fracture reduction, a key parameter in stabilizing the patient during critical care. We hypothesized that incorrectly placing or modifying the PCCD will result in increased surface pressure and decreased fracture reduction. Our mannequin studies show that for SAM Sling and T-POD, surface pressure increases if a PCCD is incorrectly placed or modified, in support of our hypothesis. However, opposite results occurred for the Pelvic Binder, where the correctly placed PCCD had higher surface pressure when compared to the incorrectly placed or modified PCCD. Additionally, pressure distribution was significantly affected by the modification of the PCCDs. The cadaver lab measurements show that modifying or incorrectly placing the PCCDs significantly limits their ability to reduce the pelvic fracture. These results suggest that while modifying or incorrectly placing PCCDs allows access to the femoral artery, there are potentially dangerous effects to the patient including increased surface pressures and limited fracture reduction.

Contributors

Agent

Created

Date Created
2021-05

BIOELECTRIC IMPEDANCE ANALYSIS AS A METHOD FOR QUANTITATIVE HYDRATION MEASUREMENT

Description

Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because

Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain both short and long term health, the ability to monitor hydration levels is growing in clinical demand. Although devices capable of monitoring hydration level exist, these devices are expensive, invasive, or inaccurate and do not offer a continuous mode of measurement. The ideal hydration monitor for consumer use needs to be characterized by its portability, affordability, and accuracy. Also, this device would need to be noninvasive and offer continuous hydration monitoring in order to accurately assess fluctuations in hydration data throughout a specified time period. One particular method for hydration monitoring that fits the majority of these criteria is known as bioelectric impedance analysis (BIA). Although current devices using BIA do not provide acceptable levels of accuracy, portability, or continuity in data collection, BIA could potentially be modified to fit many, if not all, desired customer specifications. The analysis presented here assesses the viability of using BIA as a new standard in hydration level measurement. The analysis uses data collected from 22 subjects using an existing device that employs BIA. A regression derived for estimating TBW based on the parameters of age, weight, height, sex, and impedance is presented. Using impedance data collected for each subject, a regression was also derived for estimating impedance based on the factors of age, weight, height, and sex. The derived regression was then used to calculate a new impedance value for each subject, and these new impedance values were used to estimate TBW. Through a paired-t test between the TBW values derived by using the direct measurements versus the calculated measurements of impedance, the two samples were found to be comparable. Considerations for BIA as a noninvasive measurement of hydration are discussed.

Contributors

Agent

Created

Date Created
2013-05

133024-Thumbnail Image.png

An Analysis of Digital Work Instructions on an Assembly Floor

Description

Curtiss-Wright Corporation is a global company that manufactures and provides services for the commercial, industrial, defense, and energy departments. The Curtiss-Wright facility that was the focus of this research is part of the Sensors and Controls Division and focuses on

Curtiss-Wright Corporation is a global company that manufactures and provides services for the commercial, industrial, defense, and energy departments. The Curtiss-Wright facility that was the focus of this research is part of the Sensors and Controls Division and focuses on manufacturing and assembling aircraft components. Visual Factory, an electronic work instructions software, was implemented for a trial run for two products on the assembly floor. Data collected from several workstations and operators was analyzed to determine if there were impacts to product quality or changes in assembly completion times when using Visual Factory. After analyzing data from six operators and six workstations, it was found that operators could complete processes in less time than was previously believed. Timing data also helped to create standardized learning curves and improvement percentages for specific workstations and processes. This data allows management and supervisors to more adequately allocate time for training and extrapolate post-training completion times based on initial completion times. Part quality data was less abundant, but there were fewer major issues with part quality when using Visual Factory. Visual Factory also allowed for more in-depth collection of quality issues on specific units. It is recommended that Curtiss-Wright continues with implementation of Visual Factory across the entire assembly floor and all product lines.

Contributors

Agent

Created

Date Created
2019-05

134180-Thumbnail Image.png

Implementing Kinetic Activities into a Children's Summer Program to Encourage STEM Engagement in Children Ages 5-11

Description

This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State University's Kids' Camp over the summer of 2017, every Tuesday

This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State University's Kids' Camp over the summer of 2017, every Tuesday afternoon from 4 to 6 p.m. with each activity running for roughly 40 minutes. The lesson plans were created to cover a myriad of scientific topics to account for varied student interest. The topics covered were plant biology, aerodynamics, zoology, geology, chemistry, physics, and astronomy. Each lesson was scaffolded to match the learning needs of the three age groups (5-6 year olds, 7-8 year olds, 9-11 year olds) and to encourage engagement. "Engagement" was measured by pre- and post-activity surveys approved by IRB. The surveys were in the form of statements where the children would totally agree, agree, be undecided, disagree, or totally disagree with it. To more accurately test engagement, the smiley face Likert scale was incorporated with the answer choices. After implementation of the intervention, two-tailed paired t-tests showed that student engagement significantly increased for the two lesson plans of Aerodynamics and Chemistry.

Contributors

Agent

Created

Date Created
2017-12

133882-Thumbnail Image.png

Understanding and Predicting Persistence in First Year Engineering Students

Description

Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and

Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the outcome of the crisis leads the student to commit to becoming an engineer. During the crisis phase, students are offered a multitude of experiences to shape their values and choices to influence commitment to becoming an engineering student. Student's identities in engineering are fostered through mentoring from industry, alumni, and peer coaching [3], [4]; experiences that emphasize awareness of the importance of professional interactions [5]; and experiences that show creativity, collaboration, and communication as crucial components to engineering. Further strategies to increase students' persistence include support in their transition to becoming an engineering student, education about professional engineers and the workplace [6], and engagement in engineering activities beyond the classroom. Though these strategies are applied to all students, there are challenges students face in confronting their current identity and beliefs before they can understand their value to society and achieve personal satisfaction. To understand student's progression in developing their engineering identity, first year engineering students were surveyed at the beginning and end of their first semester. Students were asked to rate their level of agreement with 22 statements about their engineering experience. Data included 840 cases. Items with factor loading less than 0.6 suggesting no sufficient explanation were removed in successive factor analysis to identify the four factors. Factor analysis indicated that 60.69% of the total variance was explained by the successive factors. Survey questions were categorized into three factors: engineering identity as defined by sense of belonging and self-efficacy, doubts about becoming an engineer, and exploring engineering. Statements in exploring engineering indicated student awareness, interest and enjoyment within engineering. Students were asked to think about whether they spent time learning what engineers do and participating in engineering activities. Statements about doubts about engineering to engineering indicated whether students had formed opinions about their engineering experience and had understanding about their environment. Engineering identity required thought in belonging and self-efficacy. Belonging statements called for thought about one's opinion in the importance of being an engineer, the meaning of engineering, an attachment to engineering, and self-identification as an engineer. Statements about self-efficacy required students to contemplate their personal judgement of whether they would be able to succeed and their ability to become an engineer. Effort in engineering indicated student willingness to invest time and effort and their choices and effort in their engineering discipline.

Contributors

Agent

Created

Date Created
2018-05

134416-Thumbnail Image.png

Engineering the Future: Enhancing the Profile of Biomedical Engineers as a Socially Relevant Discipline

Description

Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3].

Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems in engineering, such as the dominance of white males in the field and the amount of education needed to become a successful engineer [4]. Therefore, the NAE encourages that the current engineering community begin to expose the younger generations to the real foundation of engineering: problem-solving [4]. The objective of this thesis is to minimize the knowledge gap by assessing the current perception of engineering amongst middle school and high school students and improving it through engaging and interactive presentations and activities that build upon the students’ problem-solving abilities.

The project was aimed towards middle school and high school students, as this is the estimated level where they learn biology and chemistry—key subject material in biomedical engineering. The high school students were given presentations and activities related to biomedical engineering. Additionally, within classrooms, posters were presented to middle school students. The content of the posters were students of the biomedical engineering program at ASU, coming from different ethnic backgrounds to try and evoke within the middle school students a sense of their own identity as a biomedical engineer. To evaluate the impact these materials had on the students, a survey was distributed before the students’ exposure to the materials and after that assesses the students’ understanding of engineering at two different time points. A statistical analysis was conducted with Microsoft Excel to assess the influence of the activity and/or presentation on the students’ understanding of engineering.

Contributors

Agent

Created

Date Created
2017-05

134423-Thumbnail Image.png

Engineering the Future: Enhancing Diversity and Increasing Awareness of Engineering

Description

The purpose of this study was to utilize quantitative results gained through surveys to determine the effect of hands-on engineering activities and a poster study on improving understanding and awareness of engineering disciplines in high school students. There was a

The purpose of this study was to utilize quantitative results gained through surveys to determine the effect of hands-on engineering activities and a poster study on improving understanding and awareness of engineering disciplines in high school students. There was a focus on increasing participation of women and minorities in engineering to improve diversity, and this study utilized biomedical engineering as a means of achieving these goals. The analysis of this thesis focused on the results of the pre-assessment and post-assessment taken by a group of high school students before and after a program using presentations in combination with engineering activities tackling real-world problems. These assessments objectively ranked both the awareness and interest level in various engineering activities across a number of disciplines. The results were analyzed using percentages of the engineering statements that the students recognized as engineering and were interested in, as well as using t-tests. Statistical significance was found for the percentage of statements that the students expressed the highest interest level in between the initial and final survey. The other factors analyzed did not produce statistical significance, but the increase in interest level does meet one of the primary goals of the project. Since the percentages of all the positive factors did increase between the pre- and post- assessment, the study can be considered a success overall; more data is simply needed to indicate significance in these other factors. Future studies will focus on implementing this program as an after-school activity that can be led by members of the engineering community at ASU.

Contributors

Agent

Created

Date Created
2017-05

134451-Thumbnail Image.png

Engineering Self-Organizing Biliary Organoids from Human Induced Pluripotent Stem Cells

Description

Cholangiocytes, the epithelial cells of the bile duct, are the origin of cholangiopathies which often necessitate liver transplants. Current progress in generating functional biliary organoids show potential for modelling cholangiopathies and validating therapeutic drugs. Organoids by groups Ogawa et al.

Cholangiocytes, the epithelial cells of the bile duct, are the origin of cholangiopathies which often necessitate liver transplants. Current progress in generating functional biliary organoids show potential for modelling cholangiopathies and validating therapeutic drugs. Organoids by groups Ogawa et al. and Sampaziotis et al. utilize soluble molecule induction, OP9 co-culture, and three-dimensional culture to achieve self-organizing tissues which express mature cholangiocyte markers and show cholangiocyte functionality. This thesis describes our efforts to establish a standard for functional PSC-derived bile duct tissues. By directing cell fate and patterning through external cues alone, we were able to produce CK19+ALB+ hepatoblast-like cells. These soluble molecule-induced cells also expressed EpCAM and CEBPA, suggesting the presence of early liver epithelial cells. However, inconsistent results and high levels of cell death with soluble molecule induction in early stages of differentiation prompted the development of a combinatory differentiation method which utilized multiple differentiation tools. We opted to combine transcription-factor triggered differentiation with soluble molecule-mediated differentiation to produce early biliary cells with the potential to develop into mature cholangiocytes. By combining genetic engineering through the activation of doxycycline-inducible GATA6 switch and microbead-mediated CXCR4 separation, we generated patterned tissues which expressed early biliary markers, CD146, CK19, and SOX9. In the future, three-dimensional cell culture and OP9 co-culture could improve our current results by facilitating 3D cellular self-organization and promoting NOTCH signaling for cholangiocyte maturation. Next steps for this research include optimizing media formulations, tracking gene expression over time, and testing the functionality of generated tissues.

Contributors

Agent

Created

Date Created
2017-05

132606-Thumbnail Image.png

Piloerection Sensor: Insight into Autonomic Function

Description

Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly

Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for measuring piloerection are laborious and qualitative. The goal of this study is to build a wearable piloerection sensor through the use of straight-line lasers and photoresistors. The study analyzed methods of detecting and measuring goosebumps, and applied the method of laser scattering as a detection method. This device was designed and tested against a population of seven Arizona State University students. Goosebumps were elicited through conditions of cold, and video clips meant to elicit emotions of awe and sadness. Piloerection was then quantified through two controls of self-identification and camera recording, as well as the new detection method. These were then compared together, and it was found that subjective methods of determining goosebumps did not correlate well with objective measurements, but that the two objective measurements correlated well with one another. This shows that the technique of laser scattering can be used to detect goosebumps and further developments on this new detection method will be made. Moreover, the presence of uncorrelated subjective measurements further shows the need for an objective measurement of piloerection, while also bringing into question other factors that may be confused with the feeling of piloerection, such as chills or shivers. This study further reaffirmed previous studies showing a positive correlation between intense emotions.

Contributors

Agent

Created

Date Created
2019-05