Matching Items (2)
Filtering by

Clear all filters

156050-Thumbnail Image.png
Description
Membranes are a key part of pervaporation processes, which is generally a more

efficient process for selective removal of alcohol from water than distillation. It is

necessary that the membranes have high alcohol permeabilities and selectivities.

Polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs) have

demonstrated very promising results. Zeolitic imidazolate framework-71 (ZIF-71)

demonstrated promising alcohol

Membranes are a key part of pervaporation processes, which is generally a more

efficient process for selective removal of alcohol from water than distillation. It is

necessary that the membranes have high alcohol permeabilities and selectivities.

Polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs) have

demonstrated very promising results. Zeolitic imidazolate framework-71 (ZIF-71)

demonstrated promising alcohol separation abilities. In this dissertation, we present

fundamental studies on the synthesis of ZIF-71/PDMS MMMs.

Free-standing ZIF-71/ PDMS membranes with 0, 5, 25 and 40 wt % ZIF-71

loadings were prepared and the pervaporation separation for ethanol and 1-butanol from

water was measured. ZIF-71/PDMS MMMs were formed through addition cure and

condensation cure methods. Addition cure method was not compatible with ZIF-71

resulting in membranes with poor mechanical properties, while the condensation cure

method resulted in membranes with good mechanical properties. The 40 wt % ZIF-71

loading PDMS nanocomposite membranes achieved a maximum ethanol/water selectivity

of 0.81 ± 0.04 selectivity and maximum 1-butnaol/water selectivity of 5.64 ± 0.15.

The effects of synthesis time, temperature, and reactant ratio on ZIF-71 particle

size and the effect of particle size on membrane performance were studied. Temperature

had the greatest effect on ZIF-71 particle size as the synthesis temperature varied from -

20 to 35 ºC. The ZIF-71 synthesized had particle diameters ranging from 150 nm to 1

μm. ZIF-71 particle size is critical in ZIF-71/PDMS composite membrane performance

for alcohol removal from water through pervaporation. The membranes made with

micron sized ZIF-71 particles showed higher alcohol/water selectivity than those with

smaller particles. Both alcohol and water permeability increased when larger sized ZIF-

71 particles were incorporated.

ZIF-71 particles were modified with four ligands through solvent assisted linker

exchange (SALE) method: benzimidazole (BIM), 5-methylbenzimidazole (MBIM), 5,6-

dimethylbenzimidazole (DMBIM) and 4-Phenylimidazole (PI). The morphology of ZIF-

71 were maintained after the modification. ZIF-71/PDMS composite membranes with 25

wt% loading modified ZIF-71 particles were made for alcohol/water separation. Better

particle dispersion in PDMS polymer matrix was observed with the ligand modified ZIFs.

For both ethanol/water and 1-butanol/water separations, the alcohol permeability and

alcohol/water selectivity were lowered after the ZIF-71 ligand exchange reaction.
ContributorsYin, Huidan (Author) / Lind, Mary Laura (Thesis advisor) / Mu, Bin (Committee member) / Nielsen, David (Committee member) / Seo, Don (Committee member) / Lin, Jerry (Committee member) / Arizona State University (Publisher)
Created2017
156507-Thumbnail Image.png
Description
Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to convert chemical energy into electrical energy. This process can not only treat wastewater but can also produce useful byproduct hydrogen peroxide(H2O2). Process variables like anode potential and pH play important role in the MFC operation and the focus of this dissertation

Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to convert chemical energy into electrical energy. This process can not only treat wastewater but can also produce useful byproduct hydrogen peroxide(H2O2). Process variables like anode potential and pH play important role in the MFC operation and the focus of this dissertation are pH and potential control problems.

Most of the adaptive pH control solutions use signal-based-norms as cost functions, but their strong dependency on excitation signal properties makes them sensitive to noise, disturbances, and modeling errors. System-based-norm( H-infinity) cost functions provide a viable alternative for the adaptation as they are less susceptible to the signal properties. Two variants of adaptive pH control algorithms that use approximate H-infinity frequency loop-shaping (FLS) cost metrics are proposed in this dissertation.

A pH neutralization process with high retention time is studied using lab scale experiments and the experimental setup is used as a basis to develop a first-principles model. The analysis of such a model shows that only the gain of the process varies significantly with operating conditions and with buffering capacity. Consequently, the adaptation of the controller gain (single parameter) is sufficient to compensate for the variation in process gain and the focus of the proposed algorithms is the adaptation of the PI controller gain. Computer simulations and lab-scale experiments are used to study tracking, disturbance rejection and adaptation performance of these algorithms under different excitation conditions. Results show the proposed algorithm produces optimum that is less dependent on the excitation as compared to a commonly used L2 cost function based algorithm and tracks set-points reasonably well under practical conditions. The proposed direct pH control algorithm is integrated with the combined activated sludge anaerobic digestion model (CASADM) of an MFC and it is shown pH control improves its performance.

Analytical grade potentiostats are commonly used in MFC potential control, but, their high cost (>$6000) and large size, make them nonviable for the field usage. This dissertation proposes an alternate low-cost($200) portable potentiostat solution. This potentiostat is tested using a ferricyanide reactor and results show it produces performance close to an analytical grade potentiostat.
ContributorsJoshi, Rakesh (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Torres, Cesar (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2018