Matching Items (2)
Filtering by

Clear all filters

152482-Thumbnail Image.png
Description
Renewable portfolio standards prescribe for penetration of high amounts of re-newable energy sources (RES) that may change the structure of existing power systems. The load growth and changes in power flow caused by RES integration may result in re-quirements of new available transmission capabilities and upgrades of existing transmis-sion paths.

Renewable portfolio standards prescribe for penetration of high amounts of re-newable energy sources (RES) that may change the structure of existing power systems. The load growth and changes in power flow caused by RES integration may result in re-quirements of new available transmission capabilities and upgrades of existing transmis-sion paths. Construction difficulties of new transmission lines can become a problem in certain locations. The increase of transmission line thermal ratings by reconductoring using High Temperature Low Sag (HTLS) conductors is a comparatively new technology introduced to transmission expansion. A special design permits HTLS conductors to operate at high temperatures (e.g., 200oC), thereby allowing passage of higher current. The higher temperature capability increases the steady state and emergency thermal ratings of the transmission line. The main disadvantage of HTLS technology is high cost. The high cost may place special emphasis on a thorough analysis of cost to benefit of HTLS technology im-plementation. Increased transmission losses in HTLS conductors due to higher current may be a disadvantage that can reduce the attractiveness of this method. Studies described in this thesis evaluate the expenditures for transmission line re-conductoring using HTLS and the consequent benefits obtained from the potential decrease in operating cost for thermally limited transmission systems. Studies performed consider the load growth and penetration of distributed renewable energy sources according to the renewable portfolio standards for power systems. An evaluation of payback period is suggested to assess the cost to benefit ratio of HTLS upgrades. The thesis also considers the probabilistic nature of transmission upgrades. The well-known Chebyshev inequality is discussed with an application to transmission up-grades. The Chebyshev inequality is proposed to calculate minimum payback period ob-tained from the upgrades of certain transmission lines. The cost to benefit evaluation of HTLS upgrades is performed using a 225 bus equivalent of the 2012 summer peak Arizona portion of the Western Electricity Coordi-nating Council (WECC).
ContributorsTokombayev, Askhat (Author) / Heydt, Gerald T. (Thesis advisor) / Sankar, Lalitha (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
154355-Thumbnail Image.png
Description
Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design.

Locational marginal pricing scheme is the core pricing scheme in energy markets.

Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design.

Locational marginal pricing scheme is the core pricing scheme in energy markets. Locational marginal prices are good pricing signals for dispatch marginal costs. However, the locational marginal prices alone are not incentive compatible since energy markets are non-convex markets. Locational marginal prices capture dispatch costs but fail to capture commitment costs such as startup cost, no-load cost, and shutdown cost. As a result, uplift payments are paid to generators in markets in order to provide incentives for generators to follow market solutions. The uplift payments distort pricing signals.

In this thesis, pricing schemes in electric energy markets are studied. In the first part, convex hull pricing scheme is studied and the pricing model is extended with network constraints. The subgradient algorithm is applied to solve the pricing model. In the second part, a stochastic dispatchable pricing model is proposed to better address the non-convexity and uncertainty issues in day-ahead energy markets. In the third part, an energy storage arbitrage model with the current locational marginal price scheme is studied. Numerical test cases are studied to show the arguments in this thesis.

The overall market and pricing scheme design is a very complex problem. This thesis gives a thorough overview of pricing schemes in day-ahead energy markets and addressed several key issues in the markets. New pricing schemes are proposed to improve market efficiency.
ContributorsLi, Chao (Author) / Hedman, Kory (Thesis advisor) / Sankar, Lalitha (Committee member) / Scaglione, Anna (Committee member) / Arizona State University (Publisher)
Created2016