Matching Items (4)
148195-Thumbnail Image.png
Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

ContributorsSneh, Tal (Author) / Kozicki, Michael (Thesis director) / Gonzalez-Velo, Yago (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148014-Thumbnail Image.png
Description

My research aims to determine the effectiveness of meditation and sleep applications (apps) on the reduction of anxiety and stress in college students, with a focus on sedative piano music. Results showed a significant reduction of stress and anxiety levels in college students when listening to sedative piano music versus

My research aims to determine the effectiveness of meditation and sleep applications (apps) on the reduction of anxiety and stress in college students, with a focus on sedative piano music. Results showed a significant reduction of stress and anxiety levels in college students when listening to sedative piano music versus non-sedative piano music. Music along with other therapy modalities in meditation and sleep apps show promise in reducing students’ anxiety and stress and promoting their successes.

ContributorsPantha, Bidur (Author) / Brian, Jennifer (Thesis director) / Patten, Kristopher (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132606-Thumbnail Image.png
Description
Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for

Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for measuring piloerection are laborious and qualitative. The goal of this study is to build a wearable piloerection sensor through the use of straight-line lasers and photoresistors. The study analyzed methods of detecting and measuring goosebumps, and applied the method of laser scattering as a detection method. This device was designed and tested against a population of seven Arizona State University students. Goosebumps were elicited through conditions of cold, and video clips meant to elicit emotions of awe and sadness. Piloerection was then quantified through two controls of self-identification and camera recording, as well as the new detection method. These were then compared together, and it was found that subjective methods of determining goosebumps did not correlate well with objective measurements, but that the two objective measurements correlated well with one another. This shows that the technique of laser scattering can be used to detect goosebumps and further developments on this new detection method will be made. Moreover, the presence of uncorrelated subjective measurements further shows the need for an objective measurement of piloerection, while also bringing into question other factors that may be confused with the feeling of piloerection, such as chills or shivers. This study further reaffirmed previous studies showing a positive correlation between intense emotions.
ContributorsHemesath, Angela (Author) / Muthuswamy, Jitendran (Thesis director) / Shiota, Michelle (Lani) (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166175-Thumbnail Image.png
Description

STEAMtank is a project beneath that falls under the umbrella of InnovationSpace, an initiative of the Design School at Arizona State University. STEAMtank is the product of the product of the honors thesis of Abigail Peters, who envisioned a K-8 STEAM (science, technology, engineering, art, and math) museum that was

STEAMtank is a project beneath that falls under the umbrella of InnovationSpace, an initiative of the Design School at Arizona State University. STEAMtank is the product of the product of the honors thesis of Abigail Peters, who envisioned a K-8 STEAM (science, technology, engineering, art, and math) museum that was hosted on campus at ASU and was free to the community to promote STEAM education for underrepresented communities. STEAMtank is now in its second iteration, with six teams creating six attractions for the museum. Alongside these projects, presented here is a concept design for a museum exhibit focused entirely around chemistry, a particular branch of science that is lacking from all K-8 focused STEAM exhibits in Phoenix.

ContributorsFarrington, Logan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05