Matching Items (2)
137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
154587-Thumbnail Image.png
Description
Information divergence functions, such as the Kullback-Leibler divergence or the Hellinger distance, play a critical role in statistical signal processing and information theory; however estimating them can be challenge. Most often, parametric assumptions are made about the two distributions to estimate the divergence of interest. In cases where no parametric

Information divergence functions, such as the Kullback-Leibler divergence or the Hellinger distance, play a critical role in statistical signal processing and information theory; however estimating them can be challenge. Most often, parametric assumptions are made about the two distributions to estimate the divergence of interest. In cases where no parametric model fits the data, non-parametric density estimation is used. In statistical signal processing applications, Gaussianity is usually assumed since closed-form expressions for common divergence measures have been derived for this family of distributions. Parametric assumptions are preferred when it is known that the data follows the model, however this is rarely the case in real-word scenarios. Non-parametric density estimators are characterized by a very large number of parameters that have to be tuned with costly cross-validation. In this dissertation we focus on a specific family of non-parametric estimators, called direct estimators, that bypass density estimation completely and directly estimate the quantity of interest from the data. We introduce a new divergence measure, the $D_p$-divergence, that can be estimated directly from samples without parametric assumptions on the distribution. We show that the $D_p$-divergence bounds the binary, cross-domain, and multi-class Bayes error rates and, in certain cases, provides provably tighter bounds than the Hellinger divergence. In addition, we also propose a new methodology that allows the experimenter to construct direct estimators for existing divergence measures or to construct new divergence measures with custom properties that are tailored to the application. To examine the practical efficacy of these new methods, we evaluate them in a statistical learning framework on a series of real-world data science problems involving speech-based monitoring of neuro-motor disorders.
ContributorsWisler, Alan (Author) / Berisha, Visar (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Liss, Julie (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2017