Matching Items (14)
Filtering by

Clear all filters

133194-Thumbnail Image.png
Description
Even in the largest public university in the country, computer related degrees such as Computer Science, Computer Systems Engineering and Software Engineering have low enrollment rates and high dropout rates. This is interesting because the careers that require these degrees are marketed as the highest paying and most powerful. The

Even in the largest public university in the country, computer related degrees such as Computer Science, Computer Systems Engineering and Software Engineering have low enrollment rates and high dropout rates. This is interesting because the careers that require these degrees are marketed as the highest paying and most powerful. The goal of this project was to find out what the students of Arizona State University (ASU) thought about these majors and why they did or did not pick them. A total of 206 students were surveyed from a variety of sources including upper level classes, lower level classes and Barrett, the Honors College. Survey questions asked why the students picked their current major, if they had a previous major and why did they switch, and if the students had considered one of the three computer related degrees. Almost all questions were open ended, meaning the students did not have multiple choice answers and instead could write as short or as long of a response as needed. Responses were grouped based on a set of initial hypotheses and any emerging trends. These groups were displayed in several different bar graphs broken down by gender, grade level and category of student (stayed in a computer related degree, left one, joined one or picked a non-computer related degree). Trends included students of all grade levels picking their major because they were passionate or interested in the subject. This may suggest that college students are set in their path and will not switch majors easily. Students also reported seeing computer related degrees as too difficult and intimidating. However, given the low (when compared to all of ASU) number of students surveyed, the conclusions and trends given cannot be representative of ASU as a whole. Rather, they are just representative of this sample population. Further work on this study, if time permitted, would be to try to survey more students and question some of the trends established to find more specific answers.
ContributorsMeza, Edward L (Author) / Meuth, Ryan (Thesis director) / Miller, Phillip (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135246-Thumbnail Image.png
Description
The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order

The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order to ensure their reliability and accuracy. This project explores different ways in which services can be tested and evaluated through the design of various testing techniques and their implementations in a web application, which can be used by students or developers to test their web services.
ContributorsHilliker, Mark Paul (Author) / Chen, Yinong (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133334-Thumbnail Image.png
Description
Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and strenuous, software custom-built for such processes can prove essential. The work for this project was developing ICDB, an inventory control

Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and strenuous, software custom-built for such processes can prove essential. The work for this project was developing ICDB, an inventory control and build management system created for spacecraft engineers at ASU to record each step of their engineering processes. In-house development means ICDB is more precisely designed around its users' functionality and cost requirements than most off-the-shelf commercial offerings. By placing a complex relational database behind an intuitive web application, ICDB enables organizations and their users to create and store parts libraries, assembly designs, purchasing and location records for inventory items, and more.
ContributorsNoss, Karl Friederich (Author) / Davulcu, Hasan (Thesis director) / Rios, Ken (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134066-Thumbnail Image.png
Description
For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier

For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier to entry for the field of robotics and make it exponentially more accessible for people around the world. For our honors thesis, we chose to take the design from BCN3D and attempt to build their robot, to see how accessible the design truly is. Although their designs were not perfect and we were forced to make some adjustments to the 3D files, overall the work put forth by the people at BCN3D was extremely useful in successfully building a robotic arm that is programmed with ease.
ContributorsCohn, Riley (Co-author) / Petty, Charles (Co-author) / Ben Amor, Hani (Thesis director) / Yong, Sze Zheng (Committee member) / Computer Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134797-Thumbnail Image.png
Description
With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to

With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to inexpensive and not efficient. This leaves a low cost niche into the market of a virtual office assistant or manager to display messages and to help direct people in obtaining contact information. The development of a low cost solution revolves around the software needed to solve the various problems an accessible and user friendly Virtual Interface in which the owner of the Virtual Office Manager/Assistant can communicate to colleagues who are at standby outside of the owner's office and vice versa. This interface will be allowing the owner to describe the status pertaining to their absence or any other message sent to the interface. For example, the status of the owner's work commute can be described with a simple "Running Late" phrase or a message like "Busy come back in 10 minutes". In addition, any individual with an interest to these entries will have the opportunity to respond back because the device will provide contact information. When idle, the device will show supplemental information such as the owner's calendar and name. The scope of this will be the development and testing of solutions to achieve these goals.
ContributorsOffenberger, Spencer Eliot (Author) / Kozicki, Michael (Thesis director) / Goryll, Michael (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
187320-Thumbnail Image.png
Description
As threats emerge and change, the life of a police officer continues to intensify. To better support police training curriculums and police cadets through this critical career juncture, this thesis proposes a state-of-the-art framework for stress detection using real-world data and deep neural networks. As an integral step of a

As threats emerge and change, the life of a police officer continues to intensify. To better support police training curriculums and police cadets through this critical career juncture, this thesis proposes a state-of-the-art framework for stress detection using real-world data and deep neural networks. As an integral step of a larger study, this thesis investigates data processing techniques to handle the ambiguity of data collected in naturalistic contexts and leverages data structuring approaches to train deep neural networks. The analysis used data collected from 37 police training cadetsin five different training cohorts at the Phoenix Police Regional Training Academy. The data was collected at different intervals during the cadets’ rigorous six-month training course. In total, data were collected over 11 months from all the cohorts combined. All cadets were equipped with a Fitbit wearable device with a custom-built application to collect biometric data, including heart rate and self-reported stress levels. Throughout the data collection period, the cadets were asked to wear the Fitbit device and respond to stress level prompts to capture real-time responses. To manage this naturalistic data, this thesis leveraged heart rate filtering algorithms, including Hampel, Median, Savitzky-Golay, and Wiener, to remove potentially noisy data. After data processing and noise removal, the heart rate data and corresponding stress level labels are processed into two different dataset sizes. The data is then fed into a Deep ECGNet (created by Prajod et al.), a simple Feed Forward network (created by Sim et al.), and a Multilayer Perceptron (MLP) network for binary classification. Experimental results show that the Feed Forward network achieves the highest accuracy (90.66%) for data from a single cohort, while the MLP model performs best on data across cohorts, achieving an 85.92% accuracy. These findings suggest that stress detection is feasible on a variate set of real-world data using deepneural networks.
ContributorsParanjpe, Tara Anand (Author) / Zhao, Ming (Thesis advisor) / Roberts, Nicole (Thesis advisor) / Duran, Nicholas (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2023
158677-Thumbnail Image.png
Description
Convolutional Neural Network (CNN) has achieved state-of-the-art performance in numerous applications like computer vision, natural language processing, robotics etc. The advancement of High-Performance Computing systems equipped with dedicated hardware accelerators has also paved the way towards the success of compute intensive CNNs. Graphics Processing Units (GPUs), with massive processing capability,

Convolutional Neural Network (CNN) has achieved state-of-the-art performance in numerous applications like computer vision, natural language processing, robotics etc. The advancement of High-Performance Computing systems equipped with dedicated hardware accelerators has also paved the way towards the success of compute intensive CNNs. Graphics Processing Units (GPUs), with massive processing capability, have been of general interest for the acceleration of CNNs. Recently, Field Programmable Gate Arrays (FPGAs) have been promising in CNN acceleration since they offer high performance while also being re-configurable to support the evolution of CNNs. This work focuses on a design methodology to accelerate CNNs on FPGA with low inference latency and high-throughput which are crucial for scenarios like self-driving cars, video surveillance etc. It also includes optimizations which reduce the resource utilization by a large margin with a small degradation in performance thus making the design suitable for low-end FPGA devices as well.

FPGA accelerators often suffer due to the limited main memory bandwidth. Also, highly parallel designs with large resource utilization often end up achieving low operating frequency due to poor routing. This work employs data fetch and buffer mechanisms, designed specifically for the memory access pattern of CNNs, that overlap computation with memory access. This work proposes a novel arrangement of the systolic processing element array to achieve high frequency and consume less resources than the existing works. Also, support has been extended to more complicated CNNs to do video processing. On Intel Arria 10 GX1150, the design operates at a frequency as high as 258MHz and performs single inference of VGG-16 and C3D in 23.5ms and 45.6ms respectively. For VGG-16 and C3D the design offers a throughput of 66.1 and 23.98 inferences/s respectively. This design can outperform other FPGA 2D CNN accelerators by up to 9.7 times and 3D CNN accelerators by up to 2.7 times.
ContributorsRavi, Pravin Kumar (Author) / Zhao, Ming (Thesis advisor) / Li, Baoxin (Committee member) / Ren, Fengbo (Committee member) / Arizona State University (Publisher)
Created2020
132211-Thumbnail Image.png
Description
As the Internet of Things continues to expand, not only must our computing power grow
alongside it, our very approach must evolve. While the recent trend has been to centralize our
computing resources in the cloud, it now looks beneficial to push more computing power
towards the “edge” with so called edge computing,

As the Internet of Things continues to expand, not only must our computing power grow
alongside it, our very approach must evolve. While the recent trend has been to centralize our
computing resources in the cloud, it now looks beneficial to push more computing power
towards the “edge” with so called edge computing, reducing the immense strain on cloud
servers and the latency experienced by IoT devices. A new computing paradigm also brings
new opportunities for innovation, and one such innovation could be the use of FPGAs as edge
servers. In this research project, I learn the design flow for developing OpenCL kernels and
custom FPGA BSPs. Using these tools, I investigate the viability of using FPGAs as standalone
edge computing devices. Concluding that—although the technology is a great fit—the current
necessity of dynamically reprogrammable FPGAs to be closely coupled with a host CPU is
holding them back from this purpose. I propose a modification to the architecture of the Intel
Arria 10 GX that would allow it to be decoupled from its host CPU, allowing it to truly serve as a
viable edge computing solution.
ContributorsBarth, Brandon Albert (Author) / Ren, Fengbo (Thesis director) / Vrudhula, Sarma (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131472-Thumbnail Image.png
Description
Despite efforts to recruit and retain female engineering students, only about 21.3% of bachelor’s degrees each year in engineering and computer science are awarded to women. The purpose of this synthesis is to understand the ways in which current research has explored how self-identity, engineering identity, and sense of belonging

Despite efforts to recruit and retain female engineering students, only about 21.3% of bachelor’s degrees each year in engineering and computer science are awarded to women. The purpose of this synthesis is to understand the ways in which current research has explored how self-identity, engineering identity, and sense of belonging influence undergraduate women’s persistence. Analysis is focused around 4 themes that emerged: (1) Sense of Self: Self-Efficacy, Expectancy Value Theory; (2) Culture of Engineering: Engineering Identity; (3) Stereotype Threat; (4) Interdisciplinary Studies to Expand the Culture of Engineering. Conclusions of this synthesis may be used as opportunities for future engagement with these topics.
ContributorsTapia, Kayla (Author) / Ganesh, Tirupalavanam (Thesis director) / Velez, Jennifer (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132414-Thumbnail Image.png
Description
A common design of multi-agent robotic systems requires a centralized master node, which coordinates the actions of all the agents. The multi-agent system designed in this project enables coordination between the robots and reduces the dependence on a single node in the system. This design change reduces the complexity of

A common design of multi-agent robotic systems requires a centralized master node, which coordinates the actions of all the agents. The multi-agent system designed in this project enables coordination between the robots and reduces the dependence on a single node in the system. This design change reduces the complexity of the central node, and makes the system more adaptable to changes in its topology. The final goal of this project was to have a group of robots collaboratively claim positions in pre-defined formations, and navigate to the position using pose data transmitted by a localization server.
Planning coordination between robots in a multi-agent system requires each robot to know the position of the other robots. To address this, the localization server tracked visual fiducial markers attached to the robots and relayed their pose to every robot at a rate of 20Hz using the MQTT communication protocol. The robots used this data to inform a potential fields path planning algorithm and navigate to their target position.
This project was unable to address all of the challenges facing true distributed multi-agent coordination and needed to make concessions in order to meet deadlines. Further research would focus on shoring up these deficiencies and developing a more robust system.
ContributorsThibeault, Quinn (Author) / Meuth, Ryan (Thesis director) / Chen, Yinong (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05