Matching Items (4)
148195-Thumbnail Image.png
Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

ContributorsSneh, Tal (Author) / Kozicki, Michael (Thesis director) / Gonzalez-Velo, Yago (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132169-Thumbnail Image.png
Description
In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating these novel alloys with industry-standard silicon technology. Unfortunately, incorporating a

In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating these novel alloys with industry-standard silicon technology. Unfortunately, incorporating a maximal amount of Sn into a Ge lattice has been difficult to achieve experimentally. At ambient conditions, pure Ge and Sn adopt cubic (α) and tetragonal (β) structures, respectively, however, to date the relative stability and structure of α and β phase GeSn alloys versus percent composition Sn has not been thoroughly studied. In this research project, computational tools were used to perform state-of-the-art predictive quantum simulations to study the structural, bonding and energetic trends in GeSn alloys in detail over a range of experimentally accessible compositions. Since recent X-Ray and vibrational studies have raised some controversy about the nanostructure of GeSn alloys, the investigation was conducted with ordered, random and clustered alloy models.
By means of optimized geometry analysis, pure Ge and Sn were found to adopt the alpha and beta structures, respectively, as observed experimentally. For all theoretical alloys, the corresponding αphase structure was found to have the lowest energy, for Sn percent compositions up to 90%. However at 50% Sn, the correspondingβ alloy energies are predicted to be only ~70 meV higher. The formation energy of α-phase alloys was found to be positive for all compositions, whereas only two beta formation energies were negative. Bond length distributions were analyzed and dependence on Sn incorporation was found, perhaps surprisingly, not to be directly correlated with cell volume. It is anticipated that the data collected in this project may help to elucidate observed complex vibrational properties in these systems.
ContributorsLiberman-Martin, Zoe Elise (Author) / Chizmeshya, Andrew (Thesis director) / Sayres, Scott (Committee member) / Wolf, George (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132606-Thumbnail Image.png
Description
Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for

Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for measuring piloerection are laborious and qualitative. The goal of this study is to build a wearable piloerection sensor through the use of straight-line lasers and photoresistors. The study analyzed methods of detecting and measuring goosebumps, and applied the method of laser scattering as a detection method. This device was designed and tested against a population of seven Arizona State University students. Goosebumps were elicited through conditions of cold, and video clips meant to elicit emotions of awe and sadness. Piloerection was then quantified through two controls of self-identification and camera recording, as well as the new detection method. These were then compared together, and it was found that subjective methods of determining goosebumps did not correlate well with objective measurements, but that the two objective measurements correlated well with one another. This shows that the technique of laser scattering can be used to detect goosebumps and further developments on this new detection method will be made. Moreover, the presence of uncorrelated subjective measurements further shows the need for an objective measurement of piloerection, while also bringing into question other factors that may be confused with the feeling of piloerection, such as chills or shivers. This study further reaffirmed previous studies showing a positive correlation between intense emotions.
ContributorsHemesath, Angela (Author) / Muthuswamy, Jitendran (Thesis director) / Shiota, Michelle (Lani) (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166175-Thumbnail Image.png
Description

STEAMtank is a project beneath that falls under the umbrella of InnovationSpace, an initiative of the Design School at Arizona State University. STEAMtank is the product of the product of the honors thesis of Abigail Peters, who envisioned a K-8 STEAM (science, technology, engineering, art, and math) museum that was

STEAMtank is a project beneath that falls under the umbrella of InnovationSpace, an initiative of the Design School at Arizona State University. STEAMtank is the product of the product of the honors thesis of Abigail Peters, who envisioned a K-8 STEAM (science, technology, engineering, art, and math) museum that was hosted on campus at ASU and was free to the community to promote STEAM education for underrepresented communities. STEAMtank is now in its second iteration, with six teams creating six attractions for the museum. Alongside these projects, presented here is a concept design for a museum exhibit focused entirely around chemistry, a particular branch of science that is lacking from all K-8 focused STEAM exhibits in Phoenix.

ContributorsFarrington, Logan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05