Matching Items (988)
Filtering by

Clear all filters

151301-Thumbnail Image.png
Description
Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as

Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as indium, gallium and aluminum. The solubility of those dopant elements in ZnO is still debatable; but, it is necessary to find alternative conducting materials when their form is film or nanostructure for display devices. This is a consequence of the ever increasing price of indium. In addition, a new generation solar cell (nanostructured or hybrid photovoltaics) requires compatible materials which are capable of free standing on substrates without seed or buffer layers and have the ability introduce electrons or holes pathway without blocking towards electrodes. The nanostructures for solar cells using inorganic materials such as silicon (Si), titanium oxide (TiO2), and ZnO have been an interesting topic for research in solar cell community in order to overcome the limitation of efficiency for organic solar cells. This dissertation is a study of the rational solution-based synthesis of 1-dimentional ZnO nanomaterial and its solar cell applications. These results have implications in cost effective and uniform nanomanufacturing for the next generation solar cells application by controlling growth condition and by doping transition metal element in solution.
ContributorsChoi, Hyung Woo (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Theodore, N. David (Committee member) / Arizona State University (Publisher)
Created2012
151596-Thumbnail Image.png
Description
Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3

Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3 in a simple, contactless room temperature measurement. However in practice, recombination lifetime τr measurements such as photoconductance decay (PCD) and surface photovoltage (SPV) that are widely used for characterization of bulk wafers face serious limitations when applied to thin epitaxial layers, where the layer thickness is smaller than the minority carrier diffusion length Ln. Other methods such as microwave photoconductance decay (µ-PCD), photoluminescence (PL), and frequency-dependent SPV, where the generated excess carriers are confined to the epitaxial layer width by using short excitation wavelengths, require complicated configuration and extensive surface passivation processes that make them time-consuming and not suitable for process screening purposes. Generation lifetime τg, typically measured with pulsed MOS capacitors (MOS-C) as test structures, has been shown to be an eminently suitable technique for characterization of thin epitaxial layers. It is for these reasons that the IC community, largely concerned with unipolar MOS devices, uses lifetime measurements as a "process cleanliness monitor." However when dealing with ultraclean epitaxial wafers, the classic MOS-C technique measures an effective generation lifetime τg eff which is dominated by the surface generation and hence cannot be used for screening impurity densities. I have developed a modified pulsed MOS technique for measuring generation lifetime in ultraclean thin p/p+ epitaxial layers which can be used to detect metallic impurities with densities as low as 10-10 cm-3. The widely used classic version has been shown to be unable to effectively detect such low impurity densities due to the domination of surface generation; whereas, the modified version can be used suitably as a metallic impurity density monitoring tool for such cases.
ContributorsElhami Khorasani, Arash (Author) / Alford, Terry (Thesis advisor) / Goryll, Michael (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2013
151597-Thumbnail Image.png
Description
Trenchless technology is a group of techniques whose utilization allows for the installation, rehabilitation, and repair of underground infrastructure with minimal excavation from the ground surface. As the built environment becomes more congested, projects are trending towards using trenchless technologies for their ability to quickly produce a quality product with

Trenchless technology is a group of techniques whose utilization allows for the installation, rehabilitation, and repair of underground infrastructure with minimal excavation from the ground surface. As the built environment becomes more congested, projects are trending towards using trenchless technologies for their ability to quickly produce a quality product with minimal environmental and social costs. Pilot tube microtunneling (PTMT) is a trenchless technology where new pipelines may be installed at accurate and precise line and grade over manhole to manhole distances. The PTMT process can vary to a certain degree, but typically involves the following three phases: jacking of the pilot tube string to achieve line and grade, jacking of casing along the pilot bore and rotation of augers to excavate the borehole to a diameter slightly larger than the product pipe, and jacking of product pipe directly behind the last casing. Knowledge of the expected productivity rates and jacking forces during a PTMT installation are valuable tools that can be used for properly weighing its usefulness versus competing technologies and minimizing risks associated with PTMT. This thesis outlines the instrumentation and monitoring process used to record jacking frame hydraulic pressures from seven PTMT installations. Cyclic patterns in the data can be detected, indicating the installation of a single pipe segment, and enabling productivity rates for each PTMT phase to be determined. Furthermore, specific operations within a cycle, such as pushing a pipe or retracting the machine, can be observed, allowing for identification of the critical tasks associated with each phase. By identifying the critical tasks and developing more efficient means for their completion, PTMT productivity can be increased and costs can be reduced. Additionally, variations in depth of cover, drive length, pipe diameter, and localized ground conditions allowed for trends in jacking forces to be identified. To date, jacking force predictive models for PTMT are non-existent. Thus, jacking force data was compared to existing predictive models developed for the closely related pipe jacking and microtunneling methodologies, and the applicability of their adoption for PTMT jacking force prediction was explored.
ContributorsOlson, Matthew P (Author) / Ariaratnam, Samuel T (Thesis advisor) / Lueke, Jason S (Committee member) / Zapata, Claudia E (Committee member) / Tang, Pingbo (Committee member) / Arizona State University (Publisher)
Created2013
151457-Thumbnail Image.png
Description
High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed AlGaN/GaN HEMTs, (2) microstructural and chemical analysis of the gate/buffer interface of AlN/GaN HEMTs, and (3) studies of the impact of laser-liftoff processing on AlGaN/GaN HEMTs. The electrical performance of stressed AlGaN/GaN HEMTs was measured and the devices binned accordingly. Source- and drain-side degraded, undegraded, and unstressed devices were then prepared via focused-ion-beam milling for examination. Defects in the near-gate region were identified and their correlation to electrical measurements analyzed. Increased gate leakage after electrical stressing is typically attributed to "V"-shaped defects at the gate edge. However, strong evidence was found for gate metal diffusion into the barrier layer as another contributing factor. AlN/GaN HEMTs grown on sapphire substrates were found to have high electrical performance which is attributed to the AlN barrier layer, and robust ohmic and gate contact processes. TEM analysis identified oxidation at the gate metal/AlN buffer layer interface. This thin a-oxide gate insulator was further characterized by energy-dispersive x-ray spectroscopy and energy-filtered TEM. Attributed to this previously unidentified layer, high reverse gate bias up to −30 V was demonstrated and drain-induced gate leakage was suppressed to values of less than 10−6 A/mm. In addition, extrinsic gm and ft * LG were improved to the highest reported values for AlN/GaN HEMTs fabricated on sapphire substrates. Laser-liftoff (LLO) processing was used to separate the active layers from sapphire substrates for several GaN-based HEMT devices, including AlGaN/GaN and InAlN/GaN heterostructures. Warpage of the LLO samples resulted from relaxation of the as-grown strain and strain arising from dielectric and metal depositions, and this strain was quantified by both Newton's rings and Raman spectroscopy methods. TEM analysis demonstrated that the LLO processing produced no detrimental effects on the quality of the epitaxial layers. TEM micrographs showed no evidence of either damage to the ~2 μm GaN epilayer generated threading defects.
ContributorsJohnson, Michael R. (Author) / Mccartney, Martha R (Thesis advisor) / Smith, David J. (Committee member) / Goodnick, Stephen (Committee member) / Shumway, John (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2012
151480-Thumbnail Image.png
Description
The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use

The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use in clinical and training applications. Studies demonstrated that as fatigue progresses, the EMG signal undergoes a shift in frequency, and different physiological mechanisms on the possible cause of the shift were considered. Time-frequency processing, using the Wigner distribution or spectrogram, is one of the techniques used to estimate the instantaneous mean frequency and instantaneous median frequency of the EMG signal using a variety of techniques. However, these time-frequency methods suffer either from cross-term interference when processing signals with multiple components or time-frequency resolution due to the use of windowing. This study proposes the use of the matching pursuit decomposition (MPD) with a Gaussian dictionary to process EMG signals produced during both isometric and dynamic contractions. In particular, the MPD obtains unique time-frequency features that represent the EMG signal time-frequency dependence without suffering from cross-terms or loss in time-frequency resolution. As the MPD does not depend on an analysis window like the spectrogram, it is more robust in applying the timefrequency features to identify the spectral time-variation of the EGM signal.
ContributorsAustin, Hiroko (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2012
Description
An issue with the utilization of swimming pools is that pumps are operated an excessive number of hours to keep the pool free of debris and algae. Case in point, according to the pool industry, a pump should operate one hour for every ten degrees of ambient temperature. A dynamic

An issue with the utilization of swimming pools is that pumps are operated an excessive number of hours to keep the pool free of debris and algae. Case in point, according to the pool industry, a pump should operate one hour for every ten degrees of ambient temperature. A dynamic model and a control strategy have been developed using Matlab/Simulink that uses environmental conditions together with chemicals that hinder or aid algae growth in order to determine algae population. This model suggests ways to function the pump on shorter time intervals to reduce energy consumption, while simultaneously maintaining algae populations at acceptable levels. Other factors included in the model are pool thermal dynamics and pool pump/filter performance characteristics, since they also have an effect algae growth. This thesis presents the first step for an alternative way of operating a swimming pool by minimizing operating costs while eliminating algae.
ContributorsBallard, Roderick (Author) / Macia, Narciso (Thesis advisor) / Narveson, Brentt (Committee member) / Mchenry, Albert (Committee member) / Dempster, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
151512-Thumbnail Image.png
Description
Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7

Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7 μm achievable using lattice matched GaInAs. The large lattice mismatch required to reach the extended wavelengths results in photodetector materials that contain a large number of misfit dislocations. The low quality of these materials results in a large nonradiative Shockley Read Hall generation/recombination rate that is manifested as an undesirable large thermal noise level in these photodetectors. This work focuses on utilizing the different band structure engineering methods to design more efficient devices on InP substrates. One prospective way to improve photodetector performance at the extended wavelengths is to utilize lattice matched GaInAs/GaAsSb structures that have a type-II band alignment, where the ground state transition energy of the superlattice is smaller than the bandgap of either constituent material. Over the extended wavelength range of 2 to 3 μm this superlattice structure has an optimal period thickness of 3.4 to 5.2 nm and a wavefunction overlap of 0.8 to 0.4, respectively. In using a type-II superlattice to extend the cutoff wavelength there is a tradeoff between the wavelength reached and the electron-hole wavefunction overlap realized, and hence absorption coefficient achieved. This tradeoff and the subsequent reduction in performance can be overcome by two methods: adding bismuth to this type-II material system; applying strain on both layers in the system to attain strain-balanced condition. These allow the valance band alignment and hence the wavefunction overlap to be tuned independently of the wavelength cutoff. Adding 3% bismuth to the GaInAs constituent material, the resulting lattice matched Ga0.516In0.484As0.970Bi0.030/GaAs0.511Sb0.489superlattice realizes a 50% larger absorption coefficient. While as, similar results can be achieved with strain-balanced condition with strain limited to 1.9% on either layer. The optimal design rules derived from the different possibilities make it feasible to extract superlattice period thickness with the best absorption coefficient for any cutoff wavelength in the range.  
ContributorsSharma, Ankur R (Author) / Johnson, Shane (Thesis advisor) / Goryll, Michael (Committee member) / Roedel, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
151418-Thumbnail Image.png
Description
ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of

ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10 - 100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
ContributorsDaugherty, Robin (Author) / Allee, David R. (Thesis advisor) / Chae, Junseok (Thesis advisor) / Aberle, James T (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012