Matching Items (960)
Filtering by

Clear all filters

152136-Thumbnail Image.png
Description
Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving

Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving the rates of reductive dechlorination and the growth of Dehalococcoides in mixed communities. Biostimulation of contaminated sites or microcosms with electron donor fails to consistently promote dechlorination of PCE/TCE beyond cis-dichloroethene (cis-DCE), even when the presence of Dehalococcoides is confirmed. Supported by data from microcosm experiments, I showed that the stalling at cis-DCE is due a H2 competition in which components of the soil or sediment serve as electron acceptors for competing microorganisms. However, once competition was minimized by providing selective enrichment techniques, I illustrated how to obtain both fast rates and high-density Dehalococcoides using three distinct enrichment cultures. Having achieved a heightened awareness of the fierce competition for electron donor, I then identified bicarbonate (HCO3-) as a potential H2 sink for reductive dechlorination. HCO3- is the natural buffer in groundwater but also the electron acceptor for hydrogenotrophic methanogens and homoacetogens, two microbial groups commonly encountered with Dehalococcoides. By testing a range of concentrations in batch experiments, I showed that methanogens are favored at low HCO3 and homoacetogens at high HCO3-. The high HCO3- concentrations increased the H2 demand which negatively affected the rates and extent of dechlorination. By applying the gained knowledge on microbial community management, I ran the first successful continuous stirred-tank reactor (CSTR) at a 3-d hydraulic retention time for cultivation of dechlorinating cultures. I demonstrated that using carefully selected conditions in a CSTR, cultivation of Dehalococcoides at short retention times is feasible, resulting in robust cultures capable of fast dechlorination. Lastly, I provide a systematic insight into the effect of high ammonia on communities involved in dechlorination of chloroethenes. This work documents the potential use of landfill leachate as a substrate for dechlorination and an increased tolerance of Dehalococcoides to high ammonia concentrations (2 g L-1 NH4+-N) without loss of the ability to dechlorinate TCE to ethene.
ContributorsDelgado, Anca Georgiana (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Halden, Rolf U. (Committee member) / Rittmann, Bruce E. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
152146-Thumbnail Image.png
Description
Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.
ContributorsPrabhakar, Amlendu (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2013
152153-Thumbnail Image.png
Description
Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables and constraints needed and improves the computational efficiency significantly. Second, the AC power flow model is applied to TEP models. Relaxations and reformulations are proposed to make the AC model based TEP problem solvable. Third, a convexified AC network model is proposed for TEP studies with reactive power and off-nominal bus voltage magnitudes included in the model. A MILP-based loss model and its relaxations are also investigated. The second part of this dissertation investigates the uncertainty modeling issues in the TEP problem. A two-stage stochastic TEP model is proposed and decomposition algorithms based on the L-shaped method and progressive hedging (PH) are developed to solve the stochastic model. Results indicate that the stochastic TEP model can give a more accurate estimation of the annual operating cost as compared to the deterministic TEP model which focuses only on the peak load.
ContributorsZhang, Hui (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Mittelmann, Hans D (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2013
152155-Thumbnail Image.png
Description
The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog

The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog of the transmission LMP (DLMP) as an enabler of the advanced applications of the enhanced distribution system. The DLMP is envisioned as a control signal that can incentivize distribution system resources to behave optimally in a manner that benefits economic efficiency and system reliability and that can optimally couple the transmission and the distribution systems. The DLMP is calculated from a two-stage optimization problem; a transmission system OPF and a distribution system OPF. An iterative framework that ensures accurate representation of the distribution system's price sensitive resources for the transmission system problem and vice versa is developed and its convergence problem is discussed. As part of the DLMP calculation framework, a DCOPF formulation that endogenously captures the effect of real power losses is discussed. The formulation uses piecewise linear functions to approximate losses. This thesis explores, with theoretical proofs, the breakdown of the loss approximation technique when non-positive DLMPs/LMPs occur and discusses a mixed integer linear programming formulation that corrects the breakdown. The DLMP is numerically illustrated in traditional and enhanced distribution systems and its superiority to contemporary pricing mechanisms is demonstrated using price responsive loads. Results show that the impact of the inaccuracy of contemporary pricing schemes becomes significant as flexible resources increase. At high elasticity, aggregate load consumption deviated from the optimal consumption by up to about 45 percent when using a flat or time-of-use rate. Individual load consumption deviated by up to 25 percent when using a real-time price. The superiority of the DLMP is more pronounced when important distribution network conditions are not reflected by contemporary prices. The individual load consumption incentivized by the real-time price deviated by up to 90 percent from the optimal consumption in a congested distribution network. While the DLMP internalizes congestion management, the consumption incentivized by the real-time price caused overloads.
ContributorsAkinbode, Oluwaseyi Wemimo (Author) / Hedman, Kory W (Thesis advisor) / Heydt, Gerald T (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2013
152088-Thumbnail Image.png
Description
The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and

The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and ground granulated blast furnace slag are commonly used for their content of soluble silica and aluminate species that can undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification. The following topics are the focus of this thesis: (i) the use of microwave assisted thermal processing, in addition to heat-curing as a means of alkali activation and (ii) the relative effects of alkali cations (K or Na) in the activator (powder activators) on the mechanical properties and chemical structure of these systems. Unsuitable curing conditions instigate carbonation, which in turn lowers the pH of the system causing significant reductions in the rate of fly ash activation and mechanical strength development. This study explores the effects of sealing the samples during the curing process, which effectively traps the free water in the system, and allows for increased aluminosilicate activation. The use of microwave-curing in lieu of thermal-curing is also studied in order to reduce energy consumption and for its ability to provide fast volumetric heating. Potassium-based powder activators dry blended into the slag binder system is shown to be effective in obtaining very high compressive strengths under moist curing conditions (greater than 70 MPa), whereas sodium-based powder activation is much weaker (around 25 MPa). Compressive strength decreases when fly ash is introduced into the system. Isothermal calorimetry is used to evaluate the early hydration process, and to understand the reaction kinetics of the alkali powder activated systems. A qualitative evidence of the alkali-hydroxide concentration of the paste pore solution through the use of electrical conductivity measurements is also presented, with the results indicating the ion concentration of alkali is more prevalent in the pore solution of potassium-based systems. The use of advanced spectroscopic and thermal analysis techniques to distinguish the influence of studied parameters is also discussed.
ContributorsChowdhury, Ussala (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2013
152089-Thumbnail Image.png
Description
Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in

Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in virtual water for the use of local water supplies. This study provides a review of existing work in the use of virtual water and water footprint methods. Virtual water trade has been shown to be a successful method for addressing water scarcity and decreasing overall water consumption by shifting high water consumptive processes to wetter regions. These results however assume that all water resource supplies are equivalent regardless of physical location and they do not tie directly to economic markets. In this study we introduce a new mathematical framework, Embedded Resource Accounting (ERA), which is a synthesis of several different analytical methods presently used to quantify and describe human interactions with the economy and the natural environment. We define the specifics of the ERA framework in a generic context for the analysis of embedded resource trade in a way that links directly with the economics of that trade. Acknowledging the cyclical nature of water and the abundance of actual water resources on Earth, this study addresses fresh water availability within a given region. That is to say, the quantities of fresh water supplies annually available at acceptable quality for anthropogenic uses. The results of this research provide useful tools for water resource managers and policy makers to inform decision making on, (1) reallocation of local available fresh water resources, and (2) strategic supplementation of those resources with outside fresh water resources via the import of virtual water.
ContributorsAdams, Elizabeth Anne (Author) / Ruddell, Benjamin L (Thesis advisor) / Allenby, Braden R. (Thesis advisor) / Seager, Thomas P (Committee member) / Arizona State University (Publisher)
Created2013
152110-Thumbnail Image.png
Description
In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used.

In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used. If that is the case, the soil is compacted to in-situ density and water content (or matric suction), which should best represent the expansive profile in question. It is standard practice to subject the specimen to a wetting process at a particular net normal stress. Even though currently accepted laboratory testing standard procedures provide insight on how the profile conditions changes with time, these procedures do not assess the long term effects on the soil due to climatic changes. In this experimental study, an assessment and quantification of the effect of multiple wetting/drying cycles on the volume change behavior of two different naturally occurring soils was performed. The changes in wetting and drying cycles were extreme when comparing the swings in matric suction. During the drying cycle, the expansive soil was subjected to extreme conditions, which decreased the moisture content less than the shrinkage limit. Nevertheless, both soils were remolded at five different compacted conditions and loaded to five different net normal stresses. Each sample was subjected to six wetting and drying cycles. During the assessment, it was evident from the results that the swell/collapse strain is highly non-linear at low stress levels. The strain-net normal stress relationship cannot be defined by one single function without transforming the data. Therefore, the dataset needs to be fitted to a bi-modal logarithmic function or to a logarithmic transformation of net normal stress in order to use a third order polynomial fit. It was also determined that the moisture content changes with time are best fit by non-linear functions. For the drying cycle, the radial strain was determined to have a constant rate of change with respect to the axial strain. However, for the wetting cycle, there was not enough radial strain data to develop correlations and therefore, an assumption was made based on 55 different test measurements/observations, for the wetting cycles. In general, it was observed that after each subsequent cycle, higher swelling was exhibited for lower net normal stress values; while higher collapse potential was observed for higher net normal stress values, once the net normal stress was less than/greater than a threshold net normal stress value. Furthermore, the swelling pressure underwent a reduction in all cases. Particularly, the Anthem soil exhibited a reduction in swelling pressure by at least 20 percent after the first wetting/drying cycle; while Colorado soil exhibited a reduction of 50 percent. After about the fourth cycle, the swelling pressure seemed to stabilized to an equilibrium value at which a reduction of 46 percent was observed for the Anthem soil and 68 percent reduction for the Colorado soil. The impact of the initial compacted conditions on heave characteristics was studied. Results indicated that materials compacted at higher densities exhibited greater swell potential. When comparing specimens compacted at the same density but at different moisture content (matric suction), it was observed that specimens compacted at higher suction would exhibit higher swelling potential, when subjected to the same net normal stress. The least amount of swelling strain was observed on specimens compacted at the lowest dry density and the lowest matric suction (higher water content). The results from the laboratory testing were used to develop ultimate heave profiles for both soils. This analysis showed that even though the swell pressure for each soil decreased with cycles, the amount of heave would increase or decrease depending upon the initial compaction condition. When the specimen was compacted at 110% of optimum moisture content and 90% of maximum dry density, it resulted in an ultimate heave reduction of 92 percent for Anthem and 685 percent for Colorado soil. On the other hand, when the soils were compacted at 90% optimum moisture content and 100% of the maximum dry density, Anthem specimens heave 78% more and Colorado specimens heave was reduced by 69%. Based on the results obtained, it is evident that the current methods to estimate heave and swelling pressure do not consider the effect of wetting/drying cycles; and seem to fail capturing the free swell potential of the soil. Recommendations for improvement current methods of practice are provided.
ContributorsRosenbalm, Daniel Curtis (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra L. (Committee member) / Kavazanjian, Edward (Committee member) / Witczak, Mathew W (Committee member) / Arizona State University (Publisher)
Created2013
152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
ContributorsMiller, Steven (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
152040-Thumbnail Image.png
Description
"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small

"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I_3^-+2e^___3I^-, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s^2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 ug/sqrt(Hz) at 20 Hz.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Kozicki, Micheal (Committee member) / Arizona State University (Publisher)
Created2013