Matching Items (3)
Filtering by

Clear all filters

133909-Thumbnail Image.png
Description
The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this ga

The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this gap is human-robot interaction for a more hands-on and impactful experience that will leave students more interested in pursuing the field. Our project is a Robotic Head Kit that can be used in an educational setting to teach about its electrical, mechanical, programming, and psychological concepts. We took an existing robot head prototype and further advanced it so it can be easily assembled while still maintaining human complexity. Our research for this project dove into the electronics, mechanics, software, and even psychological barriers present in order to advance the already existing head design. The kit we have developed combines the field of robotics with psychology to create and add more life-like features and functionality to the robot, nicknamed "James Junior." The goal of our Honors Thesis was to initially fix electrical, mechanical, and software problems present. We were then tasked to run tests with high school students to validate our assembly instructions while gathering their observations and feedback about the robot's programmed reactions and emotions. The electrical problems were solved with custom PCBs designed to power and program the existing servo motors on the head. A new set of assembly instructions were written and modifications to the 3D printed parts were made for the kit. In software, existing code was improved to implement a user interface via keypad and joystick to give students control of the robot head they construct themselves. The results of our tests showed that we were not only successful in creating an intuitive robot head kit that could be easily assembled by high school students, but we were also successful in programming human-like expressions that could be emotionally perceived by the students.
ContributorsRathke, Benjamin (Co-author) / Rivera, Gerardo (Co-author) / Sodemann, Angela (Thesis director) / Itagi, Manjunath (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155715-Thumbnail Image.png
Description
Today, in a world of automation, the impact of Artificial Intelligence can be seen in every aspect of our lives. Starting from smart homes to self-driving cars everything is run using intelligent, adaptive technologies. In this thesis, an attempt is made to analyze the correlation between driving quality and its

Today, in a world of automation, the impact of Artificial Intelligence can be seen in every aspect of our lives. Starting from smart homes to self-driving cars everything is run using intelligent, adaptive technologies. In this thesis, an attempt is made to analyze the correlation between driving quality and its impact on the use of car infotainment system and vice versa and hence the driver distraction. Various internal and external driving factors have been identified to understand the dependency and seriousness of driver distraction caused due to the car infotainment system. We have seen a number UI/UX changes, speech recognition advancements in cars to reduce distraction. But reducing the number of casualties on road is still a persisting problem in hand as the cognitive load on the driver is considered to be one of the primary reasons for distractions leading to casualties. In this research, a pathway has been provided to move towards building an artificially intelligent, adaptive and interactive infotainment which is trained to behave differently by analyzing the driving quality without the intervention of the driver. The aim is to not only shift focus of the driver from screen to street view, but to also change the inherent behavior of the infotainment system based on the driving statistics at that point in time without the need for driver intervention.
ContributorsSuresh, Seema (Author) / Gaffar, Ashraf (Thesis advisor) / Sodemann, Angela (Committee member) / Gonzalez-Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2017
Description
With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.
ContributorsKusel, Scott Daniel (Author) / Hsu, Keng (Thesis advisor) / Sodemann, Angela (Committee member) / Kannan, Arunachala M (Committee member) / Arizona State University (Publisher)
Created2017