Matching Items (31)
Filtering by

Clear all filters

152071-Thumbnail Image.png
Description
The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into

The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into artificial hands in order to enhance grasp stability and reduce the cognitive burden on the user. To this end, three studies were conducted to understand how human hands respond, passively and actively, to unexpected perturbations of a grasped object along and about different axes relative to the hand. The first study investigated the effect of magnitude, direction, and axis of rotation on precision grip responses to unexpected rotational perturbations of a grasped object. A robust "catch-up response" (a rapid, pulse-like increase in grip force rate previously reported only for translational perturbations) was observed whose strength scaled with the axis of rotation. Using two haptic robots, we then investigated the effects of grip surface friction, axis, and direction of perturbation on precision grip responses for unexpected translational and rotational perturbations for three different hand-centric axes. A robust catch-up response was observed for all axes and directions for both translational and rotational perturbations. Grip surface friction had no effect on the stereotypical catch-up response. Finally, we characterized the passive properties of the precision grip-object system via robot-imposed impulse perturbations. The hand-centric axis associated with the greatest translational stiffness was different than that for rotational stiffness. This work expands our understanding of the passive and active features of precision grip, a hallmark of human dexterous manipulation. Biological insights such as these could be used to enhance the functionality of artificial hands and the quality of life for upper extremity amputees.
ContributorsDe Gregorio, Michael (Author) / Santos, Veronica J. (Thesis advisor) / Artemiadis, Panagiotis K. (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Helms Tillery, Stephen I. (Committee member) / Arizona State University (Publisher)
Created2013
153807-Thumbnail Image.png
Description
Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user thoughts into machine commands, it is important to have robust

Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user thoughts into machine commands, it is important to have robust and fail proof signal processing and machine learning modules which operate on the raw EEG signals and estimate the current thought of the user.

In this thesis, several techniques used to perform EEG signal pre-processing, feature extraction and signal classification have been discussed, implemented, validated and verified; efficient supervised machine learning models, for the EEG motor imagery signal classification are identified. To further improve the performance of system unsupervised feature learning techniques have been investigated by pre-training the Deep Learning models. Use of pre-training stacked autoencoders have been proposed to solve the problems caused by random initialization of weights in neural networks.

Motor Imagery (imaginary hand and leg movements) signals are acquire using the Emotiv EEG headset. Different kinds of features like mean signal, band powers, RMS of the signal have been extracted and supplied to the machine learning (ML) stage, wherein, several ML techniques like LDA, KNN, SVM, Logistic regression and Neural Networks are applied and validated. During the validation phase the performances of various techniques are compared and some important observations are reported. Further, deep Learning techniques like autoencoding have been used to perform unsupervised feature learning. The reliability of the features is analyzed by performing classification by using the ML techniques mentioned earlier. The performance of the neural networks has been further improved by pre-training the network in an unsupervised fashion using stacked autoencoders and supplying the stacked autoencoders’ network parameters as initial parameters to the neural network. All the findings in this research, during each phase (pre-processing, feature extraction, classification) are directly relevant and can be used by the BCI research community for building motor imagery based BCI applications.

Additionally, this thesis attempts to develop, test, and compare the performance of an alternative method for classifying human driving behavior. This thesis proposes the use of driver affective states to know the driving behavior. The purpose of this part of the thesis was to classify the EEG data collected from several subjects while driving simulated vehicle and compare the classification results with those obtained by classifying the driving behavior using vehicle parameters collected simultaneously from all the subjects. The objective here is to see if the drivers’ mental state is reflected in his driving behavior.
ContributorsManchala, Vamsi Krishna (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2015
156321-Thumbnail Image.png
Description
The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase incorporation of sensors into portable electrical devices. The value

The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase incorporation of sensors into portable electrical devices. The value for sensor technologies are increased when the sensors are developed into innovative measuring system for application uses in the Aerospace, Defense, and Healthcare industries. While sensors are not new, their increased performance, size reduction, and decrease in cost has opened the door for innovative sensor combination for portable devices that could be worn or easily moved around. With this opportunity for further development of sensor use through concept engineering development, three concept projects for possible innovative portable devices was undertaken in this research. One project was the development of a pulse oximeter devise with fingerprint recognition. The second project was prototyping a portable Bluetooth strain gage monitoring system. The third project involved sensors being incorporated onto flexible printed circuit board (PCB) for improved comfort of wearable devices. All these systems were successfully tested in lab.
ContributorsNichols, Kevin William (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Brad (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
156349-Thumbnail Image.png
Description
In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down

In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down on cost to produce the sensors as well as enabling the manufacture of custom sensors in different sizes and different configurations. Currently commercially available sensors are expensive and are usually designed for very specific applications. By creating these same types of sensors using new methods and materials, these new sensors will show that flexible sensor creation for many uses at a fraction of the cost is achievable.
ContributorsCasanova, Lucas Montgomery (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
156250-Thumbnail Image.png
Description
Recent research and study have showed the potential of auto-parametric system in controlling stability and parametric resonance. In this project, two different designs for auto-parametrically excited mass-spring-damper systems were studied. The theoretical models were developed to describe the behavior of the systems, and simulation models were constructed to validate the

Recent research and study have showed the potential of auto-parametric system in controlling stability and parametric resonance. In this project, two different designs for auto-parametrically excited mass-spring-damper systems were studied. The theoretical models were developed to describe the behavior of the systems, and simulation models were constructed to validate the analytical results. The error between simulation and theoretical results was within 2%. Both theoretical and simulation results showed that the implementation of auto-parametric system could help reduce or amplify the resonance significantly.
ContributorsLe, Thao (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Rogers, Brad (Committee member) / Arizona State University (Publisher)
Created2018
155947-Thumbnail Image.png
Description
In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has

In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has two springs: one mimicking Achilles tendon and the other mimicking Anterior-Tibialis tendon. The dynamics of the prosthetic ankle is discussed and simulated using Working model 2D. The simulation results are used to optimize the springs stiffness. Two experiments are conducted using the developed ankle to verify the simulation It is found that this novel ankle design is better than Solid Ankle Cushioned Heel (SACH) foot. The experimental data is used to find the tendon and muscle activation forces of the subject wearing the prosthesis using OpenSim. A conclusion is included along with suggested future work.
ContributorsBhat, Sandesh Ganapati (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Lee, Hyuglae (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2017
156763-Thumbnail Image.png
Description
Geometrical tolerances define allowable manufacturing variations in the features of mechanical parts. For a given feature (planar face, cylindrical hole) the variations may be modeled with a T-Map, a hyper solid in 6D small displacement coordinate space. A general method for constructing T-Maps is to decompose a feature into points,

Geometrical tolerances define allowable manufacturing variations in the features of mechanical parts. For a given feature (planar face, cylindrical hole) the variations may be modeled with a T-Map, a hyper solid in 6D small displacement coordinate space. A general method for constructing T-Maps is to decompose a feature into points, identify the variational limits to these points allowed by the feature tolerance zone, represent these limits using linear halfspaces, transform these to the central local reference frame and intersect these to form the T-Map for the entire feature. The method is explained and validated for existing T-Map models. The method is further used to model manufacturing variations for the positions of axes in patterns of cylindrical features.

When parts are assembled together, feature level manufacturing variations accumulate (stack up) to cause variations in one or more critical dimensions, e.g. one or more clearances. When the T-Maps model is applied to complex assemblies it is possible to obtain as many as six dimensional stack up relation, instead of the one or two typical of 1D or 2D charts. The sensitivity of the critical assembly dimension to the manufacturing variations at each feature can be evaluated by fitting a functional T-Map over a kinematically transformed T-Map of the feature. By considering individual features and the tolerance specifications, one by one, the sensitivity of each tolerance on variations of a critical assembly level dimension can be evaluated. The sum of products of tolerance values and respective sensitivities gives value of worst case functional variation. The same sensitivity equation can be used for statistical tolerance analysis by fitting a Gaussian normal distribution function to each tolerance range and forming an equation of variances from all the contributors. The method for evaluating sensitivities and variances for each contributing feature is explained with engineering examples.

The overall objective of this research is to develop method for automation friendly and efficient T-Map generation and statistical tolerance analysis.
ContributorsChitale, Aniket (Author) / Davidson, Joseph (Thesis advisor) / Sugar, Thomas (Thesis advisor) / Shah, Jami (Committee member) / Arizona State University (Publisher)
Created2018
153635-Thumbnail Image.png
Description
A control method based on the phase angle is used to control oscillating systems. The phase oscillator uses the sine and cosine of the phase angle to change key properties of a mass-spring-damper system, including amplitude, frequency, and equilibrium. An inverted pendulum is used to show a further application of

A control method based on the phase angle is used to control oscillating systems. The phase oscillator uses the sine and cosine of the phase angle to change key properties of a mass-spring-damper system, including amplitude, frequency, and equilibrium. An inverted pendulum is used to show a further application of the phase oscillator. Two methods of control based on the phase oscillator are used for swing-up and balancing of the pendulum. The first control method involves two separate stages. The scenarios where this control works are discussed. The second control method uses variable coefficients to result in a smooth transition between swing-up and balancing.
ContributorsBates, Andrew (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2015
155798-Thumbnail Image.png
Description
Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system

Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system is presented.

A passive and a powered ankle joint system is developed and fit to the field of prosthetics, specifically ankle joint replacement for able bodied gait. The general 1 DOF robotic joint designs are examined and the results from testing are discussed. Achievements in this area include the able bodied gait like behavior of passive systems for slow walking speeds. For higher walking speeds the powered ankle system is capable of adding the necessary energy to propel the user forward and remain similar to able bodied gait, effectively replacing the calf muscle. While running has not fully been achieved through past powered ankle devices the full power necessary is reached in this work for running and sprinting while achieving 4x’s power amplification through the powered ankle mechanism.

A theoretical approach to robotic joints is then analyzed in order to combine the advantages of both passive and powered systems. Energy methods are shown to provide a correct behavioral analysis of any robotic joint system. Manipulation of the energy curves and mechanism coupler curves allows real time joint behavioral adjustment. Such a powered joint can be adjusted to passively achieve desired behavior for different speeds and environmental needs. The effects on joint moment and stiffness from adjusting one type of mechanism is presented.
ContributorsHolgate, Robert (Author) / Sugar, Thomas (Thesis advisor) / Artemiades, Panagiotis (Thesis advisor) / Berman, Spring (Committee member) / Mignolet, Marc (Committee member) / Davidson, Joseph (Committee member) / Arizona State University (Publisher)
Created2017
155146-Thumbnail Image.png
Description
The advancements in the technology of MEMS fabrication has been phenomenal in recent years. In no mean measure this has been the result of continued demand from the consumer electronics market to make devices smaller and better. MEMS inertial measuring units (IMUs) have found revolutionary applications in a wide array

The advancements in the technology of MEMS fabrication has been phenomenal in recent years. In no mean measure this has been the result of continued demand from the consumer electronics market to make devices smaller and better. MEMS inertial measuring units (IMUs) have found revolutionary applications in a wide array of fields like medical instrumentation, navigation, attitude stabilization and virtual reality. It has to be noted though that for advanced applications of motion tracking, navigation and guidance the cost of the IMUs is still pretty high. This is mainly because the process of calibration and signal processing used to get highly stable results from MEMS IMU is an expensive and time-consuming process. Also to be noted is the inevitability of using external sensors like GPS or camera for aiding the IMU data due to the error propagation in IMU measurements adds to the complexity of the system.

First an efficient technique is proposed to acquire clean and stable data from unaided IMU measurements and then proceed to use that system for tracking human motion. First part of this report details the design and development of the low-cost inertial measuring system ‘yIMU’. This thesis intends to bring together seemingly independent techniques that were highly application specific into one monolithic algorithm that is computationally efficient for generating reliable orientation estimates. Second part, systematically deals with development of a tracking routine for human limb movements. The validity of the system has then been verified.

The central idea is that in most cases the use of expensive MEMS IMUs is not warranted if robust smart algorithms can be deployed to gather data at a fraction of the cost. A low-cost prototype has been developed comparable to tactical grade performance for under $15 hardware. In order to further the practicability of this device we have applied it to human motion tracking with excellent results. The commerciality of device has hence been thoroughly established.
ContributorsShetty, Yatiraj K (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2016