Matching Items (3)
Filtering by

Clear all filters

156507-Thumbnail Image.png
Description
Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to convert chemical energy into electrical energy. This process can not only treat wastewater but can also produce useful byproduct hydrogen peroxide(H2O2). Process variables like anode potential and pH play important role in the MFC operation and the focus of this dissertation

Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to convert chemical energy into electrical energy. This process can not only treat wastewater but can also produce useful byproduct hydrogen peroxide(H2O2). Process variables like anode potential and pH play important role in the MFC operation and the focus of this dissertation are pH and potential control problems.

Most of the adaptive pH control solutions use signal-based-norms as cost functions, but their strong dependency on excitation signal properties makes them sensitive to noise, disturbances, and modeling errors. System-based-norm( H-infinity) cost functions provide a viable alternative for the adaptation as they are less susceptible to the signal properties. Two variants of adaptive pH control algorithms that use approximate H-infinity frequency loop-shaping (FLS) cost metrics are proposed in this dissertation.

A pH neutralization process with high retention time is studied using lab scale experiments and the experimental setup is used as a basis to develop a first-principles model. The analysis of such a model shows that only the gain of the process varies significantly with operating conditions and with buffering capacity. Consequently, the adaptation of the controller gain (single parameter) is sufficient to compensate for the variation in process gain and the focus of the proposed algorithms is the adaptation of the PI controller gain. Computer simulations and lab-scale experiments are used to study tracking, disturbance rejection and adaptation performance of these algorithms under different excitation conditions. Results show the proposed algorithm produces optimum that is less dependent on the excitation as compared to a commonly used L2 cost function based algorithm and tracks set-points reasonably well under practical conditions. The proposed direct pH control algorithm is integrated with the combined activated sludge anaerobic digestion model (CASADM) of an MFC and it is shown pH control improves its performance.

Analytical grade potentiostats are commonly used in MFC potential control, but, their high cost (>$6000) and large size, make them nonviable for the field usage. This dissertation proposes an alternate low-cost($200) portable potentiostat solution. This potentiostat is tested using a ferricyanide reactor and results show it produces performance close to an analytical grade potentiostat.
ContributorsJoshi, Rakesh (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Torres, Cesar (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2018
133669-Thumbnail Image.png
Description
The removal of support material from metal 3D printed objects is a laborious necessity for the post-processing of powder bed fusion printing (PBF). Supports are typically mechanically removed by machining techniques. Sacrificial supports are necessary in PBF printing to relieve thermal stresses and support overhanging parts often resulting in the

The removal of support material from metal 3D printed objects is a laborious necessity for the post-processing of powder bed fusion printing (PBF). Supports are typically mechanically removed by machining techniques. Sacrificial supports are necessary in PBF printing to relieve thermal stresses and support overhanging parts often resulting in the inclusion of supports in regions of the part that are not easily accessed by mechanical removal methods. Recent innovations in PBF support removal include dissolvable metal supports through an electrochemical etching process. Dissolvable PBF supports have the potential to significantly reduce the costs and time associated with traditional support removal. However, the speed and effectiveness of this approach is inhibited by numerous factors such as support geometry and metal powder entrapment within supports. To fully realize this innovative approach, it is necessary to model and understand the design parameters necessary to optimize support structures applicable to an electrochemical etching process. The objective of this study was to evaluate the impact of block additive manufacturing support parameters on key process outcomes of the dissolution of 316 stainless steel support structures. The parameters investigated included hatch spacing and perforation, and the outcomes of interests included time required for completion, surface roughness, and effectiveness of the etching process. Electrical current was also evaluated as an indicator of process completion. Analysis of the electrical current throughout the etching process showed that the dissolution is diffusion limited to varying degrees, and is dependent on support structure parameters. Activation and passivation behavior was observed during current leveling, and appeared to be more pronounced in non-perforated samples with less dense hatch spacing. The correlation between electrical current and completion of the etching process was unclear, as the support structures became mechanically removable well before the current leveled. The etching process was shown to improve surface finish on unsupported surfaces, but support was shown to negatively impact surface finish. Tighter hatch spacing was shown to correlate to larger variation in surface finish, due to ridges left behind by the support structures. In future studies, it is recommended current be more closely correlated to process completion and more roughness data be collected to identify a trend between hatch spacing and surface roughness.
ContributorsAbranovic, Brandon (Author) / Hildreth, Owen (Thesis director) / Torres, Cesar (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
161677-Thumbnail Image.png
Description
Corrosion is one of the key failure modes for stainless steel (SS) piping assets handling water resources managed by utility companies. During downtime, the costs start to incur as the field engineer procures its replacement parts. The parts may or may not be in stock depending on how old, complex,

Corrosion is one of the key failure modes for stainless steel (SS) piping assets handling water resources managed by utility companies. During downtime, the costs start to incur as the field engineer procures its replacement parts. The parts may or may not be in stock depending on how old, complex, and common the part model is. As a result, water utility companies and its resilience to operate amid part failure are a strong function of the supply chain for replacement piping. Metal additive manufacturing (AM) has been widely recognized for its ability to (a) deliver small production scales, (b) address complex part geometries, (c) offer large elemental metal and alloy selections, (d) provide superior material properties. The key motive is to harvest the short lead time of metal AM to explore its use for replacement parts for legacy piping assets in utility-scale water management facilities. In this paper, the goal was to demonstrate 3D printing of stainless steel (SS) 316L parts using selective laser melting (SLM) technology. The corrosion resistance of 3D printed SS 316L was investigated using (a) Chronoamperometry (b) Cyclic Potentiodynamic Polarization (CPP) and Electrochemical Impedance Spectroscopy (EIS) and its improved resistance from wrought (conventional) part was also studied. Then the weldability of 3D printed SS 316L to wrought SS 316L was illustrated and finally, the mechanical strength of the weld and the effect of corrosion on weld strength was investigated using uniaxial tensile testing. The results show that 3D printed part compared to the wrought part has a) lower mass loss before and after corrosion, (b) higher pitting potential, and (c) higher charge transfer resistance. The tensile testing of welded dog bone specimens indicates that the 3D printed parts despite being less ductile were observed to have higher weld strength compared to the wrought part. On this basis, metal AM holds great value to be explored further for replacement piping parts owing to their better corrosion resistance and mechanical performance.
ContributorsSampath, Venkata Krishnan (Author) / Azeredo, Bruno (Thesis advisor) / Torres, Cesar (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2021