Matching Items (115)
Filtering by

Clear all filters

151827-Thumbnail Image.png
Description
The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the

The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the power plant through visual inspection, electrical performance, and infrared thermography. The purpose of this evaluation was to measure and understand the extent of degradation to the system along with the identification of the failure modes in this hot-dry climatic condition. This 4000 module bipolar system was originally installed with a 200 kW DC output of PV array (17 degree fixed tilt) and an AC output of 175 kVA. The system was shown to degrade approximately at a rate of 2.3% per year with no apparent potential induced degradation (PID) effect. The power plant is made of two arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the north array and the other thesis presents the results obtained on the south array. The resulting study showed that PV module design, array configuration, vandalism, installation methods and Arizona environmental conditions have had an effect on this system's longevity and reliability. Ultimately, encapsulation browning, higher series resistance (potentially due to solder bond fatigue) and non-cell interconnect ribbon breakages outside the modules were determined to be the primary causes for the power loss.
ContributorsBelmont, Jonathan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Henderson, Mark (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
150202-Thumbnail Image.png
Description
Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed

Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt anlges 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt anlge 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.
ContributorsCano Valero, José (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
154078-Thumbnail Image.png
Description
Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.
ContributorsChicca, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2015
156394-Thumbnail Image.png
Description
Encapsulant is a key packaging component of photovoltaic (PV) modules, which protects the solar cell from physical, environmental and electrical damages. Ethylene-vinyl acetate (EVA) is one of the major encapsulant materials used in the PV industry. This work focuses on indoor accelerated ultraviolet (UV) stress testing and characterization to investigate

Encapsulant is a key packaging component of photovoltaic (PV) modules, which protects the solar cell from physical, environmental and electrical damages. Ethylene-vinyl acetate (EVA) is one of the major encapsulant materials used in the PV industry. This work focuses on indoor accelerated ultraviolet (UV) stress testing and characterization to investigate the EVA discoloration and delamination in PV modules by using various non-destructive characterization techniques, including current-voltage (IV) measurements, UV fluorescence (UVf) and colorimetry measurements. Mini-modules with glass/EVA/cell/EVA/backsheet construction were fabricated in the laboratory with two types of EVA, UV-cut EVA (UVC) and UV-pass EVA (UVP).

The accelerated UV testing was performed in a UV chamber equipped with UV lights at an ambient temperature of 50°C, little or no humidity and total UV dosage of 400 kWh/m2. The mini-modules were maintained at three different temperatures through UV light heating by placing different thickness of thermal insulation sheets over the backsheet. Also, prior to thermal insulation sheet placement, the backsheet and laminate edges were fully covered with aluminum tape to prevent oxygen diffusion into the module and hence the photobleaching reaction.

The characterization results showed that mini-modules with UV-cut EVA suffered from discoloration while the modules with UV-pass EVA suffered from delamination. UVf imaging technique has the capability to identify the discoloration region in the UVC modules in the very early stage when the discoloration is not visible to the naked eyes, whereas Isc measurement is unable to measure the performance loss until the color becomes visibly darker. YI also provides the direct evidence of yellowing in the encapsulant. As expected, the extent of degradation due to discoloration increases with the increase in module temperature. The Isc loss is dictated by both the regions – discolored area at the center and non-discolored area at the cell edges, whereas the YI is only determined at the discolored region due to low probe area. This led to the limited correlation between Isc and YI in UVC modules.

In case of UVP modules, UV radiation has caused an adverse impact on the interfacial adhesion between the EVA and solar cell, which was detected from UVf images and severe Isc loss. No change in YI confirms that the reason for Isc loss is not due to yellowing but the delamination.

Further, the activation energy of encapsulant discoloration was estimated by using Arrhenius model on two types of data, %Isc drop and ΔYI. The Ea determined from the change in YI data for the EVA encapsulant discoloration reaction without the influence of oxygen and humidity is 0.61 eV. Based on the activation energy determined in this work and hourly weather data of any site, the degradation rate for the encaspulant browning mode can be estimated.
ContributorsDolia, Kshitiz (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018
157020-Thumbnail Image.png
Description
Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the metal-solder ribbon. Solder bond degradation at the cell interconnect is one of the primary causes for increase in series resistance, which is also considered to be an invisible defect [1]. Combination of intermetallic compounds (IMC) formation during soldering and their growth due to solid state diffusion over its lifetime result in formation of weak interfaces between the solar cell and the interconnect. Thermal cycling under regular operating conditions induce thermo-mechanical fatigue over these weak interfaces resulting in contact reduction or loss. Contact reduction or loss leads to increase in series resistance which further manifests into power and fill factor loss. The degree of intermixing of metallic interfaces and contact loss depends on climatic conditions as temperature and humidity (moisture ingression into the PV module laminate) play a vital role in reaction kinetics of these layers. Modules from Arizona and Florida served as a good sample set to analyze the effects of hot and humid climatic conditions respectively. The results obtained in the current thesis quantifies the thickness of IMC formation from SEM-EDS profiles, where similar modules obtained from different climatic conditions were compared. The results indicate the thickness of the IMC and detachment degree to be growing with age and operating temperatures of the module. This can be seen in CuxSny IMC which is thicker in the case of Arizona module. The results obtained from FL

ii

aged modules also show that humidity accelerates the formation of IMC as they showed thicker AgxSny layer and weak interconnect-contact interfaces as compared to Arizona modules. It is also shown that climatic conditions have different effects on rate at which CuxSny and AgxSny intermetallic compounds are formed.
ContributorsBuddha, Viswa Sai Pavan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Alford, Terry (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018
133883-Thumbnail Image.png
Description
There has been a recent push for queer fiction, especially in the young adult genre, whose focus is gay and lesbian relationships. This growth is much needed in terms of visibility and the furthering of acceptance, but there are still subjects within the LGBTQ+ community that need to be addressed,

There has been a recent push for queer fiction, especially in the young adult genre, whose focus is gay and lesbian relationships. This growth is much needed in terms of visibility and the furthering of acceptance, but there are still subjects within the LGBTQ+ community that need to be addressed, including bisexual, asexual, and non-binary erasure. There are many people who claim that these identities do not exist, are labels used as a stepping stone on one's journey to discovering that they are homosexual, or are invented excuses for overtly promiscuous or prudish behavior. The existence of negative stereotypes, particularly those of non-binary individuals, is largely due to a lack of visibility and respectful representation within media and popular culture. However, there is still a dearth of non-binary content in popular literature outside of young adult fiction. Can You See Me? aims to fill the gap in bisexual, asexual, and non-binary representation in adult literature. Each of the four stories that make up this collection deals with an aspect of gender and/or sexuality that has been erased, ignored, or denied visibility in American popular culture. The first story, "We'll Grow Lemon Trees," examines bisexual erasure through the lens of sociolinguistics. A bisexual Romanian woman emigrates to Los Angeles in 1989 and must navigate a new culture, learn new languages, and try to move on from her past life under a dictatorship where speaking up could mean imprisonment or death. The second story "Up, Down, All Around," is about a young genderqueer child and their parents dealing with microaggressions, examining gender norms, and exploring personal identity through imaginary scenarios, each involving an encounter with an unknown entity and a colander. The third story, "Aces High," follows two asexual characters from the day they're born to when they are 28 years old, as they find themselves in pop culture. The two endure identity crises, gender discrimination, erasure, individual obsessions, and prejudice as they learn to accept themselves and embrace who they are. In the fourth and final story, "Mile Marker 72," a gay Mexican man must hide in plain sight as he deals with the death of his partner and coming out to his best friend, whose brother is his partner's murderer.
ContributorsOchser, Jordyn M. (Author) / Bell, Matt (Thesis director) / Free, Melissa (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133902-Thumbnail Image.png
Description
South Korea possesses the only culture to successfully create a transnationality and hybridity formula that is not replicable. So why Korea and why now? The goal of this thesis creative project is to demonstrate the marketing and communications strategies used in the arts and culture industry to drive global awareness

South Korea possesses the only culture to successfully create a transnationality and hybridity formula that is not replicable. So why Korea and why now? The goal of this thesis creative project is to demonstrate the marketing and communications strategies used in the arts and culture industry to drive global awareness and interest in K-Pop. In order to achieve that goal, I created HellotoHallyu.com, a website designed for an audience of Millennials and Generation Z English speakers to increase their awareness of the growth and impact of the Korean Wave in a fun and engaging way. So those who may hear a song by K-Pop idol group BTS on a music awards show in the U.S. can get themselves up-to-speed before diving into the fast-paced world of K-culture gossip sites and forums. Hello to Hallyu delivers consumer-friendly, educational content easily understood by English speakers with no prior knowledge of Korean culture, while still piquing the interest of K-pop connoisseurs. It provides the background necessary for even the most dedicated fans to glean new knowledge of Korea's cultural industry and a new perspective on the content they consume. Hello to Hallyu is based on a combination of secondary and primary research conducted over four semesters beginning Spring 2017 and continuing through Spring 2018. This project is set up as an ever-expanding resource freely available to anyone with internet access. The research required to maintain the site will continue with the Wave. However, the content currently on the site is evergreen, a documentation of the history of the Wave as explained in peer-reviewed articles and by Dr. Ingyu Oh as well as a documentation of my personal experience with Hallyu while in Korea and as a Westerner living in the U.S. The site's goal is to demonstrate the marketing and communications strategies used in the industry to drive global awareness and interest. Through this means, Hello to Hallyu aims to provide fully developed multimedia content intended to increase English speakers' awareness of the growth and impact of the Korean Wave as shown through site visits, content views, and audience engagement.
ContributorsTravis, Lisa Anne (Author) / Hass, Mark (Thesis director) / Shewell, Justin (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133903-Thumbnail Image.png
Description
This honors thesis outlines a method for teaching argument writing in the secondary classroom, including the elements of an argument based upon the Toulmin method, and diverse ways to help students who are all types of learners become engaged and receive the support they need. It includes all elements of

This honors thesis outlines a method for teaching argument writing in the secondary classroom, including the elements of an argument based upon the Toulmin method, and diverse ways to help students who are all types of learners become engaged and receive the support they need. It includes all elements of argument, including evidence, warrants, backing, counterargument, claims, theses, the rhetorical triangle and the rhetorical appeals, including definitions and how they fit together in an argumentative essay. The largest portion of the project is dedicated to activities and resources for teachers based upon all of those elements, along with activities for the writing process as a whole. These activities are based upon the student's individual experience as well as various scholarly resources from leading professionals in the curriculum development field for English Language Arts. This is not meant to be an end-all be-all solution for teaching argument writing, but rather one of many resources that teachers can use in their classroom. This 30-page paper, including references, are condensed into an accessible website for teachers to use more easily. Each tab on the website refers to a different element or focus of the argument writing process, with both a definition and introduction as well as one or more activities for teachers to implement into the classroom. The activities are versatile and general for the purpose of teachers being able to include them into whatever curriculum they are currently teaching. The goal is that they can add argument instruction into what they are already either willingly or being required to teach in an easy and logical way. The website is available for any secondary teachers to use as they see fit at www.teachingargumentwriting.weebly.com.
ContributorsBrooks, Jenna Nicole (Author) / Blasingame, James (Thesis director) / Barnett, Juliet (Committee member) / Division of Teacher Preparation (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134168-Thumbnail Image.png
Description
The SolarSPELL is an offline, ruggedized, digital library, created by Dr. Laura Hosman for the U.S. Peace Corps. It has thousands of pieces of educational content that can be accessed through a self-contained Wi-Fi hotspot on the device itself. Currently, there are more than 200 deployed in several Pacific Island

The SolarSPELL is an offline, ruggedized, digital library, created by Dr. Laura Hosman for the U.S. Peace Corps. It has thousands of pieces of educational content that can be accessed through a self-contained Wi-Fi hotspot on the device itself. Currently, there are more than 200 deployed in several Pacific Island nations. After visiting one of these nations, Tonga, in December of 2016, I learned that almost all of the Peace Corps volunteers stationed around the Pacific Islands suffered from a lack of resources due to a variety of reasons. While the SolarSPELL helps to remedy that, the device is lacking classroom activities and resources for creative work and educational drama. Furthermore, for many students in these environments, schools are for learning information and producing high scores on exams, not for learning about creative strengths and identity. After researching curriculum development and the use of drama in an educational setting, I compiled over 50 pieces of content to include on the SolarSPELL involving art, drama, music, movement, and most importantly, imagination. These resources will allow Peace Corps volunteers to explore additional ways to teach English in their schools, while also creating a classroom environment that allows for creative expression. All the content is compiled into one folder as "Teaching Resources", and is then broken down into seven sub- categories. In the first sub-category, Art Projects, there is a collection of several hands-on projects, many of which involve recyclable or readily available materials. These projects will allow for a greater understanding of conservation and "green" living, concepts that are crucial to the stability of these island nations. The next 5 categories are Drama Readings, Music, Movement, and Video, Group Exercises, Creative Writing, and Worksheets. The second sub- category is a collection of beginner-level "Reader's Theater" scripts. The third sub-category involves music and video to engage students in movement activities. The fourth sub-category is a compilation of group games and activities to help students express themselves and learn social skills. The fifth sub-category includes a collection of activities such as fill-in-the-blank story worksheets and journal prompts which will aid in creative thinking and the practice of the English language. The sixth sub-category involves a collection of worksheets that mainly focus on self-reflection and identity. The seventh and final sub-category, Content Guide and Information, works to explain the benefits of using of drama and creative play in the classroom, as well as strategies teachers can implement in order to further engage their students in dramatic learning and play. Overall, these pieces of content are meant to be used as resources for the Peace Corps volunteers in order to provide alternative ways to practice reading, writing, and speaking the English language, a critical part of education in the Pacific Islands.
ContributorsTaylor, Amanda Nicole (Author) / Hosman, Laura (Thesis director) / McAvoy, Mary (Committee member) / School of Film, Dance and Theatre (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor) / School for the Future of Innovation in Society (Contributor)
Created2017-12