Matching Items (6)
Filtering by

Clear all filters

151771-Thumbnail Image.png
Description
This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of temperatures. The numerical results showed that this approach would be capable of experimentally estimating the temperature and velocity in the lug joint for temperatures from -60°C to 150°C. The velocity estimation algorithm was found to significantly increase the accuracy of localization at temperatures above 120°C when error due to incorrect velocity selection begins to outweigh the error due to time-of-flight measurements.
ContributorsHensberry, Kevin (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
152510-Thumbnail Image.png
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
153099-Thumbnail Image.png
Description
In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD)

In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD) employed to generate the packing ensembles will be discussed. A large number of 2D packing configurations of superdisks are subsequently analyzed, through which a relatively accurate theoretical scheme for packing-fraction prediction based on local particle contact configurations is proposed and validated via additional numerical simulations. Moreover, the studies on binary ellipsoid packing in 3D are briefly discussed and the effects of different geometrical parameters on the final packing fraction are analyzed.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Oswald, Jay (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
154754-Thumbnail Image.png
Description
The present investigation is part of a long-term effort focused on the development of a methodology for the computationally efficient prediction of the dynamic response of structures with multiple joints. The first part of this thesis reports on the dynamic response of nominally identical beams with a single lap joint

The present investigation is part of a long-term effort focused on the development of a methodology for the computationally efficient prediction of the dynamic response of structures with multiple joints. The first part of this thesis reports on the dynamic response of nominally identical beams with a single lap joint (“Brake-Reuss” beam). The observed impact responses at different levels clearly demonstrate the occurrence of both micro- and macro-slip, which are reflected by increased damping and a lowering of natural frequencies. Significant beam-to-beam variability of impact responses is also observed.

Based on these experimental results, a deterministic 4-parameter Iwan model of the joint was developed. These parameters were randomized following a previous investigation. The randomness in the impact response predicted from this uncertain model was assessed in a Monte Carlo format through a series of time integrations of the response and found to be consistent with the experimental results.

The availability of an uncertain computational model for the Brake-Reuss beam provides a starting point to analyze and model the response of multi-joint structures in the presence of uncertainty/variability. To this end, a 4-beam frame was designed that is composed of three identical Brake-Reuss beams and a fourth, stretched one. The response of that structure to impact was computed and several cases were identified.

The presence of uncertainty implies that an exact prediction of the response of a particular frame cannot be achieved. Rather, the response can only be predicted to lie within a band reflecting the level of uncertainty. In this perspective, the computational model adopted for the frame is only required to provide a good estimate of this uncertainty band. Equivalently, a relaxation of the model complexity, i.e., the introduction of epistemic uncertainty, can be performed as long as it does not affect significantly the uncertainty band of the predictions. Such an approach, which holds significant promise for the efficient computational of the response of structures with many uncertain joints, is assessed here by replacing some joints by linear spring elements. It is found that this simplification of the model is often acceptable at lower excitation/response levels.
ContributorsRobertson, Brett Anthony (Author) / Mignolet, Marc P (Thesis advisor) / Brake, Matt (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
Description
With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.
ContributorsKusel, Scott Daniel (Author) / Hsu, Keng (Thesis advisor) / Sodemann, Angela (Committee member) / Kannan, Arunachala M (Committee member) / Arizona State University (Publisher)
Created2017
161363-Thumbnail Image.png
Description
Two fatigue life prediction methods using the energy-based approach have been proposed. A number of approaches have been developed in the past five decades. This study reviews some common models and discusses the model that is most suitable for each different condition, no matter whether the model is designed

Two fatigue life prediction methods using the energy-based approach have been proposed. A number of approaches have been developed in the past five decades. This study reviews some common models and discusses the model that is most suitable for each different condition, no matter whether the model is designed to solve uniaxial, multiaxial, or biaxial loading paths in fatigue prediction. In addition, different loading cases such as various loading and constant loading are also discussed. These models are suitable for one or two conditions in fatigue prediction. While most of the existing models can only solve single cases, the proposed new energy-based approach not only can deal with different loading paths but is applicable for various loading cases. The first energy-based model using the linear cumulative rule is developed to calculate random loading cases. The method is developed by combining Miner’s rule and the rainflow-counting algorithm. For the second energy-based method, I propose an alternative method and develop an approach to avert the rainflow-counting algorithm. Specifically, I propose to use an energy-based model by directly using the time integration concept. In this study, first, the equivalent energy concept that can transform three-dimensional loading into an equivalent loading will be discussed. Second, the new damage propagation method modified by fatigue crack growth will be introduced to deal with cycle-based fatigue prediction. Third, the time-based concept will be implemented to determine fatigue damage under every cycle in the random loading case. The formulation will also be explained in detail. Through this new model, the fatigue life can be calculated properly in different loading cases. In addition, the proposed model is verified with experimental datasets from several published studies. The data include both uniaxial and multiaxial loading paths under constant loading and random loading cases. Finally, the discussion and conclusion based on the results, are included. Additional loading cases such as the spectrum including both elastic and plastic regions will be explored in future research.
ContributorsTien, Shih-Chuan (Author) / Liu, Yongming (Thesis advisor) / Nian, Qiong (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021