Matching Items (9)
Filtering by

Clear all filters

153252-Thumbnail Image.png
Description
Effective collection and dissemination of project information, including best practices, help increase the likelihood of project performance and are vital to organizations in the architecture-engineering-construction (AEC) industry. Best practices can help improve project performance, yet these practices are not universally implemented and used in the industry, due to the following:

Effective collection and dissemination of project information, including best practices, help increase the likelihood of project performance and are vital to organizations in the architecture-engineering-construction (AEC) industry. Best practices can help improve project performance, yet these practices are not universally implemented and used in the industry, due to the following: 1) not all practices are applicable to every project or organization, 2) knowledge lost in organizational turnover which leads to inconsistent collection and implementation of best practices and 3) the lack of standardized processes for best practice management in an organization.

This research, sponsored by National Academy of Construction, the Construction Industry Institute and Arizona State University, used structured interviews, a Delphi study and focus groups to explore: 1) potential benefit and industry interest in an open repository of best practices and 2) important elements of a framework/model that guides the creation, management and sustainment of an open repository of best practices.

This dissertation presents findings specifically exploring the term "Practices for Excellence", its definition, elements that hinder implementation, the potential value of an open online repository for such practices and a model to develop an open repository.
ContributorsBosfield, Roberta Patrice (Author) / Gibson, Edd (Thesis advisor) / Chester, Mikhail (Committee member) / Parrish, Kristen (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2014
153951-Thumbnail Image.png
Description
Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These

Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These challenges can be addressed by integrating sustainability grand challenges into engineering curriculum.

Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.

This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.

The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.

The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.

Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.

With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.
ContributorsAntaya, Claire Louise (Author) / Landis, Amy E. (Thesis advisor) / Parrish, Kristen (Thesis advisor) / Bilec, Melissa M (Committee member) / Besterfield-Sacre, Mary E (Committee member) / Allenby, Braden R. (Committee member) / Arizona State University (Publisher)
Created2015
156469-Thumbnail Image.png
Description
The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals

The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals who think for a living express feelings of stress about their ability to respond and fear missing critical tasks or information as they attempt to wade through all the electronic communication that floods their inboxes. Although many electronic communication tools compete for the attention of the contemporary knowledge worker, most professionals use an electronic personal information management (PIM) system, more commonly known as an e-mail application and often the ubiquitous Microsoft Outlook program. The aim of this research was to provide knowledge workers with solutions to manage the influx of electronic communication that arrives daily by studying the workers in their working environment. This dissertation represents a quest to understand the current strategies knowledge workers use to manage their e-mail, and if modification of e-mail management strategies can have an impact on productivity and stress levels for these professionals. Today’s knowledge workers rarely work entirely alone, justifying the importance of also exploring methods to improve electronic communications within teams.
ContributorsCounts, Virginia (Author) / Parrish, Kristen (Thesis advisor) / Allenby, Braden (Thesis advisor) / Landis, Amy (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
156726-Thumbnail Image.png
Description
Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases. The circular economy (CE) is based on the concept of

Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases. The circular economy (CE) is based on the concept of a closed-loop cycle (CLC) and proposes a solution that, in theory, can eliminate the environmental impacts caused by construction and demolition (C&D) waste and increase the efficiency of resources’ use. In a CLC, building materials are reused, remanufactured, recycled, and reintegrated into other buildings (or into other sectors) without creating any waste.

Designing out waste is the core principle of the CE. Design for disassembly or design for deconstruction (DfD) is the practice of planning the future deconstruction of a building and the reuse of its materials. Concepts like DfD, CE, and product-service systems (PSS) can work together to promote CLC in the built environment. PSS are business models based on stewardship instead of ownership. CE combines DfD, PSS, materials’ durability, and materials’ reuse in multiple life cycles to promote a low-carbon, regenerative economy. CE prioritizes reuse over recycling. Dealing with resource scarcity demands us to think beyond the incremental changes from recycling waste; it demands an urgent, systemic, and radical change in the way we design, build, and procure construction materials.

This dissertation aims to answer three research questions: 1) How can researchers estimate the environmental benefits of reusing building components, 2) What variables are susceptible to affect the environmental impact assessment of reuse, and 3) What are the barriers and opportunities for DfD and materials’ reuse in the current design practice in the United States.

The first part of this study investigated how different life cycle assessment (LCA) methods (i.e., hybrid LCA and process-based LCA), assumptions (e.g., reuse rates, transportation distances, number of reuses), and LCA timelines can affect the results of a closed-loop LCA. The second part of this study built on interviews with architects in the United States to understand why DfD is not part of the current design practice in the country.
ContributorsCruz Rios, Fernanda (Author) / Grau, David (Committee member) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2018
155870-Thumbnail Image.png
Description
Commercial buildings in the United States account for 19% of the total energy consumption annually. Commercial Building Energy Consumption Survey (CBECS), which serves as the benchmark for all the commercial buildings provides critical input for EnergyStar models. Smart energy management technologies, sensors, innovative demand response programs, and updated versions of

Commercial buildings in the United States account for 19% of the total energy consumption annually. Commercial Building Energy Consumption Survey (CBECS), which serves as the benchmark for all the commercial buildings provides critical input for EnergyStar models. Smart energy management technologies, sensors, innovative demand response programs, and updated versions of certification programs elevate the opportunity to mitigate energy-related problems (blackouts and overproduction) and guides energy managers to optimize the consumption characteristics. With increasing advancements in technologies relying on the ‘Big Data,' codes and certification programs such as the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and the Leadership in Energy and Environmental Design (LEED) evaluates during the pre-construction phase. It is mostly carried out with the assumed quantitative and qualitative values calculated from energy models such as Energy Plus and E-quest. However, the energy consumption analysis through Knowledge Discovery in Databases (KDD) is not commonly used by energy managers to perform complete implementation, causing the need for better energy analytic framework.

The dissertation utilizes Interval Data (ID) and establishes three different frameworks to identify electricity losses, predict electricity consumption and detect anomalies using data mining, deep learning, and mathematical models. The process of energy analytics integrates with the computational science and contributes to several objectives which are to

1. Develop a framework to identify both technical and non-technical losses using clustering and semi-supervised learning techniques.

2. Develop an integrated framework to predict electricity consumption using wavelet based data transformation model and deep learning algorithms.

3. Develop a framework to detect anomalies using ensemble empirical mode decomposition and isolation forest algorithms.

With a thorough research background, the first phase details on performing data analytics on the demand-supply database to determine the potential energy loss reduction potentials. Data preprocessing and electricity prediction framework in the second phase integrates mathematical models and deep learning algorithms to accurately predict consumption. The third phase employs data decomposition model and data mining techniques to detect the anomalies of institutional buildings.
ContributorsNaganathan, Hariharan (Author) / Chong, Oswald W (Thesis advisor) / Ariaratnam, Samuel T (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2017
155771-Thumbnail Image.png
Description
Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up approximately half of all projects in the infrastructure construction

Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up approximately half of all projects in the infrastructure construction sector (by count), the planning of these projects varies greatly, and that a consistent definition of “small infrastructure project” did not exist. This dissertation summarizes the motivations and efforts of Construction Industry Institute (CII) Research Team 314a to develop a non-proprietary front end planning tool specifically for small infrastructure projects, namely the Project Definition Rating Index (PDRI) for Small Infrastructure Projects. The author was a member of CII Research Team 314a, who was tasked with developing the tool in September 2015. The author, together with the research team, scrutinized and adapted an existing infrastructure-focused FEP tool, the PDRI for Infrastructure Projects, and other resources to develop a set of 40 specific elements relevant to the planning of small infrastructure projects. The author along with the research team supported the facilitation of seven separate industry workshops where 71 industry professionals evaluated the element descriptions and provided element prioritization data that was statistically analyzed and used to develop a corresponding weighted score sheet. The tool was tested on 76 completed and in-progress projects, the analysis of which showed that small infrastructure projects with greater scope definition (based on the tool’s scoring scheme) outperformed projects with lesser scope definition regarding cost performance, schedule performance, change performance, financial performance, and customer satisfaction. Moreover, the author found that users of the tool on in-progress projects agreed that the tool added value to their projects in a timeframe and manner consistent with their needs, and that they would continue using the tool in the future. The author also conducted qualitative and quantitative similarities and differences between PDRI – Infrastructure and PDRI – Small Infrastructure Projects in support of improved planning efforts for both types of projects. Finally, the author piloted a case study that introduced the PDRI into an introductory construction management course to enhance students’ learning experience.
ContributorsElZomor, Mohamed A (Author) / Parrish, Kristen (Thesis advisor) / Gibson, Jr., G. Edward (Committee member) / El Asmar, Mounir (Committee member) / Arizona State University (Publisher)
Created2017
171823-Thumbnail Image.png
Description
An Earned Value Management System (EVMS) is an organization’s system for project/program management that integrates a defined set of associated work scopes, schedules and budgets, allowing for effective planning, performance, and management control. A mature EVMS that is compliant with standards and guidelines, and that is applied in a positive

An Earned Value Management System (EVMS) is an organization’s system for project/program management that integrates a defined set of associated work scopes, schedules and budgets, allowing for effective planning, performance, and management control. A mature EVMS that is compliant with standards and guidelines, and that is applied in a positive social environment is critical to the overall success of large and complex projects and programs. However, a comprehensive and up-to-date literature review revealed a lack of a data-driven and consistent rating system that can gauge the maturity and the environment surrounding EVMS implementation. Therefore, the primary objective of this dissertation focuses on the EVMS maturity and environment, and investigates their impact on project performance. The author was one of the 41 research team members whose goal was to develop the novel rating system called Integrated Project/Program Management (IP2M) Maturity and Environment Total Risk Rating (METRR). Using a multi-method research approach, the rating system was developed based on a literature review of more than 600 references, a survey with 294 responses, focus group meetings, and research charrettes with more than 100 subject matter experts from the industry. Performance data from 35 completed projects and programs representing over $21.8 billion in total cost was collected and analyzed. The data analysis showed that the projects with high EVMS maturity and good EVMS environment outperformed those with low maturity and poor environment in key project performance measures. The contributions of this work includes: (1) developing definitions for EVM, EVMS and other research related terms, (2) determining the gaps in the EVMS literature, (3) determining the EVMS state of the practice in the industry, (4) developing a scalable rating system to measure the EVMS maturity and environment, (5) providing quantified evidence on the impact of EVMS maturity and environment on project performance, and (6) providing guidance to practitioners to gauge their EVMS maturity and environment for an enhanced project and program management integration and performance.
ContributorsAramali, Vartenie Mardiros (Author) / Gibson Jr., George Edward (Thesis advisor) / El Asmar, Mounir (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2022
171763-Thumbnail Image.png
Description
Construction project teams expend substantial effort to develop scope definition during the front end planning phase of building projects but oftentimes neglect to sufficiently plan for the complexities of tribal building projects. A needs assessment conducted by the author comprising interviews with practitioners familiar with construction on tribal lands revealed

Construction project teams expend substantial effort to develop scope definition during the front end planning phase of building projects but oftentimes neglect to sufficiently plan for the complexities of tribal building projects. A needs assessment conducted by the author comprising interviews with practitioners familiar with construction on tribal lands revealed the need for a front end planning (FEP) process to assess scope definition of capital projects on tribal lands. This dissertation summarizes the motivations and efforts to develop a front end planning tool for tribal building projects, the Project Definition Rating Index (PDRI) for Tribal Building Projects. The author convened a research team to review, analyze, and adapt an existing building-projects-focused FEP tool, the PDRI – Building Projects, and other resources to develop a set of 67 specific elements relevant to the planning of tribal building projects. The author supported the facilitation of seven workshops in which 20 industry professionals evaluated the element descriptions and provided element prioritization data that was statistically analyzed to develop a preliminary weighted score sheet that corresponds to the element descriptions. Given that the author was only able to collect complete data from 11 projects, definitively determining element weights was not possible. Therefore, the author leveraged a Delphi study to test the PDRI – Tribal Building Projects. Delphi study results indicate the PDRI – Tribal Building Projects element descriptions fully address the scope of tribal building projects, and 75 percent of panelists agreed they would use this tool on their next tribal project. The author also explored the PDRI – Tribal Building Projects tool through the lens of the Diné (Navajo) Philosophy of Sa’ąh Naagháí Bik’eh Hózhóón (SNBH) and the guiding principles of Nistáhákees (thinking), Nahat’á (planning), Iiná (living), and Sihasin (assurance/reflection). The results of the author’s research provides several contributions to the American Indian Studies, front end planning, and tribal building projects bodies of knowledge: 1) defining unique features of tribal projects, 2) explicitly documenting the synergies between Western and Diné ways of planning, and 3) creating a tool to assist in planning capital projects on tribal lands in the American Southwest in support of improved cost performance.
ContributorsArviso, Brianne (Author) / Parrish, Kristen (Thesis advisor) / Gibson, George E. (Committee member) / Hale, Michelle (Committee member) / Arizona State University (Publisher)
Created2022
171463-Thumbnail Image.png
Description
District heating plays an important role in improving energy efficiency and providing thermal heat to buildings. Instead of using water as an energy carrier to transport sensible heat, this dissertation explores the use of liquid-phase thermochemical reactions for district heating as well as thermal storage. Chapters 2 and 3 present

District heating plays an important role in improving energy efficiency and providing thermal heat to buildings. Instead of using water as an energy carrier to transport sensible heat, this dissertation explores the use of liquid-phase thermochemical reactions for district heating as well as thermal storage. Chapters 2 and 3 present thermodynamic and design analyses for the proposed district heating system. Chapter 4 models the use of liquid-phase thermochemical reactions for on-site solar thermal storage. In brief, the proposed district heating system uses liquid-phase thermochemical reactions to transport thermal energy from a heat source to a heat sink. The separation ensures that the stored thermochemical heat can be stored indefinitely and/or transported long distances. The reactant molecules are then pumped over long distances to the heat sink, where they are combined in an exothermic reaction to provide heat. The product of the exothermic reaction is then pumped back to the heat source for re-use. The key evaluation parameter is the system efficiency. The results demonstrate that with heat recovery, the system efficiency can be up to 77% when the sink temperature equals 25 C. The results also indicate that the appropriate chemical reaction candidates should have large reaction enthalpy and small reaction entropy. Further, the design analyses of two district heating systems, Direct District Heating (DDH) system and Indirect District Heating (IDH) system using the solvated case shows that the critical distance is 106m. When the distance is shorter than 1000,000m, the factors related to the chemical reaction at the user side and factors related to the separation process are important for the DDH system. When the distance is longer than 106m, the factors related to the fluid mechanic become more important. Because the substation of the IDH system degrades the quality of the energy, when the distance is shorter than 106m, the efficiency of the substation is significant. Lastly, I create models for on-site solar thermal storage systems using liquid-phase thermochemical reactions and hot water. The analysis shows that the thermochemical reaction is more competitive for long-duration storage applications. However, the heat recovery added to the thermochemical thermal storage system cannot help improving solar radiation absorption with high inlet temperature of the solar panel.
ContributorsZhang, Yanan (Author) / Wang, Robert (Thesis advisor) / Milcarek, Ryan (Committee member) / Parrish, Kristen (Committee member) / Phelan, Patrick (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2022