Matching Items (6)
Filtering by

Clear all filters

150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
155905-Thumbnail Image.png
Description
It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial

It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells.

Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si.

In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM).

The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation during GaP epitaxial growth on Si by MBE were proposed. To achieve high performance of GaP/Si solar cells, different GaP/Si structures were designed, fabricated and compared, including GaP as a hetero-emitter, GaP as a heterojunction on the rear side, inserting passivation membrane layers at the GaP/Si interface, and GaP/wet-oxide functioning as a passivation contact. A designed of a-Si free carrier-selective contact MoOx/Si/GaP solar cells demonstrated 14.1% power conversion efficiency.
ContributorsZhang, Chaomin (Author) / Honsberg, Christiana (Thesis advisor) / King, Richard (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2017
135917-Thumbnail Image.png
Description
Wire connected solar cells are a promising new technology that can increase the efficiency and reduce the cost of solar modules. The use of wire rather than ribbon bus bars can lead to reduced shading, better light trapping, and reduced material costs, all while eliminating the need for soldering. This

Wire connected solar cells are a promising new technology that can increase the efficiency and reduce the cost of solar modules. The use of wire rather than ribbon bus bars can lead to reduced shading, better light trapping, and reduced material costs, all while eliminating the need for soldering. This research first analyzes the optimal wire gauge to reduce cracking and improve efficiency. Wire sizes between 20 AWG and 28 AWG were tested, with the optimal size being between 24 AWG and 26 AWG for the ethylene vinyl acetate (EVA) layer used in the module. A polyethylene sheet was then added between the wires and EVA layer to prevent the EVA from running underneath the wires during lamination, ultimately allowing for a more uniform contact and only a slight reduction in quantum efficiency. Then, a comparison between tinned copper wires and indium coated copper wires is shown. A mini-module efficiency of 20.0% has been achieved using tinned copper wires, while indium coated copper wires have produced a mini-module efficiency of 21.2%. Thus, tinned copper wires can be a viable alternative to indium coated copper wires, depending on the needs of the customers and the current price of indium. The module design throughout the research utilizes a planar assembly method, which improves the ease of manufacturing for wire interconnection technology. A two-cell base component is constructed and shown, with the intended future application of making large wire connected modules. Finally, wire applications in both single-cell and four-cell flexible modules are explored, with an efficiency of 18.65% achieved on a single-cell, flexible, heterojunction solar module using wire interconnections. A fully flexible four-cell string is developed, and future recommendations for related research are included.
ContributorsTyler, Kevin Daniel (Author) / Bowden, Stuart (Thesis director) / Herasimenka, Stanislau (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
158708-Thumbnail Image.png
Description
An ongoing effort in the photovoltaic (PV) industry is to reduce the major manufacturing cost components of solar cells, the great majority of which are based on crystalline silicon (c-Si). This includes the substitution of screenprinted silver (Ag) cell contacts with alternative copper (Cu)-based contacts, usually applied with plating. Plated

An ongoing effort in the photovoltaic (PV) industry is to reduce the major manufacturing cost components of solar cells, the great majority of which are based on crystalline silicon (c-Si). This includes the substitution of screenprinted silver (Ag) cell contacts with alternative copper (Cu)-based contacts, usually applied with plating. Plated Cu contact schemes have been under study for many years with only minor traction in industrial production. One of the more commonly-cited barriers to the adoption of Cu-based contacts for photovoltaics is long-term reliability, as Cu is a significant contaminant in c-Si, forming precipitates that degrade performance via degradation of diode character and reduction of minority carrier lifetime. Cu contamination from contacts might cause degradation during field deployment if Cu is able to ingress into c-Si. Furthermore, Cu contamination is also known to cause a form of light-induced degradation (LID) which further degrades carrier lifetime when cells are exposed to light.

Prior literature on Cu-contact reliability tended to focus on accelerated testing at the cell and wafer level that may not be entirely replicative of real-world environmental stresses in PV modules. This thesis is aimed at advancing the understanding of Cu-contact reliability from the perspective of quasi-commercial modules under more realistic stresses. In this thesis, c-Si solar cells with Cu-plated contacts are fabricated, made into PV modules, and subjected to environmental stress in an attempt to induce hypothesized failure modes and understand any new vulnerabilities that Cu contacts might introduce. In particular, damp heat stress is applied to conventional, p-type c-Si modules and high efficiency, n-type c-Si heterojunction modules. I present evidence of Cu-induced diode degradation that also depends on PV module materials, as well as degradation unrelated to Cu, and in either case suggest engineering solutions to the observed degradation. In a forensic search for degradation mechanisms, I present novel evidence of Cu outdiffusion from contact layers and encapsulant-driven contact corrosion as potential key factors. Finally, outdoor exposures to light uncover peculiarities in Cu-plated samples, but do not point to especially serious vulnerabilities.
ContributorsKaras, Joseph (Author) / Bowden, Stuart (Thesis advisor) / Alford, Terry (Thesis advisor) / Tamizhmani, Govindasamy (Committee member) / Michaelson, Lynne (Committee member) / Arizona State University (Publisher)
Created2020
187785-Thumbnail Image.png
Description
This study focuses on the implications of a high reverse bias breakdown in silicon heterojunction cells (SHJ). In relevant literature, there is a lack of explicit investigation which compares high breakdown voltage cells (commonly SHJ) to low breakdown voltage cells (commonly silicon homojunctions) in an installation setting. In addition, their

This study focuses on the implications of a high reverse bias breakdown in silicon heterojunction cells (SHJ). In relevant literature, there is a lack of explicit investigation which compares high breakdown voltage cells (commonly SHJ) to low breakdown voltage cells (commonly silicon homojunctions) in an installation setting. In addition, their relationship with shading and how they react with bypass diodes are also not very prevalent. Therefore, my project dives into how shading impacts a string of high breakdown voltage cells and a string of low breakdown voltage cells, as well as how those cells interact with a bypass diode. In order to conduct this investigation, I used the simulation software LTSpice XVII to create an accurate simulation model of a SHJ cell with a 21 V reverse breakdown voltage. With this cell model, I strung 10 cells together, and varied the shading on a single cell while measuring the string’s output current, voltage, and power. Next, I attached a bypass diode to the shaded cell, and continued to increase the number of cells attached to the bypass diode while continuing to examine the string’s output. Once I gathered this data, I modified the original cell model to have a lower reverse breakdown voltage of 5 V. From here, I strung 10 cells together again, and repeated the same measurements from the 21 V string. Upon completing these measurements, I found that the SHJ cells were in fact harder to force into reverse bias than the cells with the lower reverse breakdown voltage, suggesting that solar installation owners should consider transitioning to SHJ-based modules. When bypass diodes are being considered, my results demonstrated that heavy shading (about 65% and higher) was required for the bypass diodes to have an observable impact on the string’s power output. Therefore, owners should consider how severe the shading their installation may receive before investing in bypass diodes. If owners do find the need for the bypass diodes, my findings also show that the diodes should be used sparingly and in a compromise with output power and cost.
ContributorsAvalos, Christian (Author) / Honsberg, Christiana (Thesis advisor) / Bowden, Stuart (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2023