Matching Items (5)
Filtering by

Clear all filters

135503-Thumbnail Image.png
Description
Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines

Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines for the prototype racecars is for the students to use four-stroke, Otto cycle piston engines with a displacement of no greater than 610cc. A 20mm air restrictor downstream the throttle limits the power of the engines to under 100 horsepower. A 178-page rulebook outlines the remaining restrictions as they apply to the various vehicle systems: vehicle dynamics, driver interface, aerodynamics, and engine. Vehicle dynamics is simply the study of the forces which affect wheeled vehicles in motion. Its primary components are the chassis and suspension system. Driver interface controls everything that the driver interacts with including steering wheel, seat, pedals, and shifter. Aerodynamics refers to the outside skin of the vehicle which controls the amount of drag and downforce on the vehicle. Finally, the engine consists of the air intake, engine block, cooling system, and the exhaust. The exhaust is one of the most important pieces of an engine that is often overlooked in racecar design. The purpose of the exhaust is to control the removal of the combusted air-fuel mixture from the engine cylinders. The exhaust as well as the intake is important because they govern the flow into and out of the engine's cylinders (Heywood 231). They are especially important in racecar design because they have a great impact on the power produced by an engine. The higher the airflow through the cylinders, the larger amount of fuel that can be burned and consequently, the greater amount of power the engine can produce. In the exhaust system, higher airflow is governed by several factors. A good exhaust design gives and engine a higher volumetric efficiency through the exhaust scavenging effect. Volumetric efficiency is also affected by frictional losses. In addition, the system should ideally be lightweight, and easily manufacturable. Arizona State University's Formula SAE racecar uses a Honda F4i Engine from a CBR 600 motorcycle. It is a four cylinder Otto cycle engine with a 600cc displacement. An ideal or tuned exhaust system for this car would maximize the negative gauge pressure during valve overlap at the ideal operating rpm. Based on the typical track layout for the Formula SAE design series, an ideal exhaust system would be optimized for 7500 rpm and work well in the range
ContributorsButterfield, Brandon Michael (Author) / Huang, Huei-Ping (Thesis director) / Trimble, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar plans

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar plans to initially begin by developing the foundational technological patent for our perovskite-based single-junction solar cells. Sun Stop Solar plans to initially begin by first having a patent set up, then licensing our patent to a manufacturer, and slowly building towards manufacturing our own solar modules.

ContributorsMatyushov, Ivan (Author) / Aboudi, Joseph (Co-author) / Hofer, David (Co-author) / Byrne, Jared (Thesis director) / Lawson, Brennan (Committee member) / Cartwright, Bryce (Committee member) / Adarsh, Siddharth (Committee member) / Higashino, Katsuko (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2023-05
Description

With the rise of global warming and the growing energy crisis, scientists have pivoted from typical resources to look for new materials and technologies that can aid in advancing renewable energy efforts. Perovskite materials hold the potential for making high-efficiency, low-cost solar cells through solution processing of Earth abundant materials;

With the rise of global warming and the growing energy crisis, scientists have pivoted from typical resources to look for new materials and technologies that can aid in advancing renewable energy efforts. Perovskite materials hold the potential for making high-efficiency, low-cost solar cells through solution processing of Earth abundant materials; however, scalability and manufacturability remain a challenge. In order to transition from small scale processing in inert environments via spin coating to higher throughput processing in ambient conditions via blade coating, the fundamentals of perovskite crystallization must be understood. Classical nucleation theory, the LaMer relation, and nonclassical crystallization considerations are discussed to provide a mechanism by which gellan gum, a nontoxic biopolymer from the food industry, has enabled quality halide perovskite thin films. Specifically, this research aims to study the effects of gellan gum in improving perovskite manufacturability by controlling crystallization through indirect alteration of evaporation and supersaturation rates by modifying fluid dynamics and the free energy associated with nucleation and growth. Simply, gellan gum controls crystallization to enable the fabrication of promising scalable PVSK devices in open air.

ContributorsCartledge, Carsen (Author) / Rolston, Nicholas (Thesis director) / Yu, Zhengshan (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / School of Art (Contributor)
Created2023-05
132175-Thumbnail Image.png
Description
The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the

The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the energy output from solar. One such recently researched wide band gap absorber is ZnSnN2. ZnSnN2 proves too difficult to form under most conditions, but has the necessary band gap to make it a potential earth abundant solar absorber. The deposition process for ZnSnN2 is usually conducted with Zn and Sn metal targets while flowing N2 gas. Due to restrictions with chamber depositions, instead ZnO and SnO2 targets were sputtered with N2 gas to attempt to form separate zinc and tin oxynitrides as an initial single target study prior to future combinatorial studies. The electrical and optical properties and crystal structure of these thin films were analyzed to determine the nitrogen incorporation in the thin films through X-ray diffraction, UV-Vis spectrophotometry, and 4-point probe measurements. The SnO2 thin films showed a clear response in the absorption coefficient leading but showed no observable XRD peak shift. Thus, it is unlikely that substantial amounts of nitrogen were incorporated into SnO¬2. ZnO showed a clear response increase in conductivity with N2 with an additional shift in the XRD peak at 300 °C and potential secondary phase peak. Nitrogen incorporation was achieved with fair amounts of certainty for the ZnO thin films.
ContributorsTheut, Nicholas C (Author) / Bertoni, Mariana (Thesis director) / Holman, Zachary (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
With renewable energy on the rise, researchers have turned their funding and their focus towards new solar cell technologies, and perovskites are a major source of interest. This class of materials is particularly interesting due to their quick, simple synthesis as well as their physical and electrical superiority when compared

With renewable energy on the rise, researchers have turned their funding and their focus towards new solar cell technologies, and perovskites are a major source of interest. This class of materials is particularly interesting due to their quick, simple synthesis as well as their physical and electrical superiority when compared to current silicon-based solar cells. Through this thesis, we will explore the synthesis of various types of perovskites and their subsequent characterization, which includes optical microscopy, photoluminescence spectroscopy, Raman microscopy, and X-ray diffraction. Analyzing two different perovskites both before and after a two-week period of storage revealed that while synthesis is indeed experiment-friendly, these materials have a concerning lack of stability even in ideal conditions.
ContributorsBuzas, Benjamin Joseph (Author) / Tongay, Sefaattin (Thesis director) / Muhich, Christopher (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05