Matching Items (11)
Filtering by

Clear all filters

134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
137496-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis.

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C. The economic calculations show the expected energy cost savings for Arizona residents.
ContributorsHaines, Brent Robert (Author) / Roedel, Ronald (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137463-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C.
ContributorsDenke, Steven Michael (Author) / Roedel, Ron (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
136974-Thumbnail Image.png
Description
The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which demonstrates the potential for a refined product in its conventional

The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which demonstrates the potential for a refined product in its conventional interfacing, casing, size, safety, and aesthetics. If the potential for an excellent ionization-based loudspeaker product were realized, it would be highly profitable in its reasonable cost of production, novelty, and place in a large and fitting market.
ContributorsMagnotto, Niccolo John (Author) / Roedel, Ronald (Thesis director) / Huffman, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
133232-Thumbnail Image.png
Description
Growing up in Ghana West Africa, I realized there were a few major obstacles hindering the education of the youth. One of them was the consistent supply of all year-round power. Therefore, pursuing a career in power electronics, I decided to research and implement a budget-friendly DC-AC converter that can

Growing up in Ghana West Africa, I realized there were a few major obstacles hindering the education of the youth. One of them was the consistent supply of all year-round power. Therefore, pursuing a career in power electronics, I decided to research and implement a budget-friendly DC-AC converter that can take power from a DC source such as a solar panel to make AC power, suitable for grid-implementation. This project was undertaken with two other colleagues (Ian Vogt and Brett Fennelly), as our Senior Design Capstone project. My colleagues primarily researched into the "advanced" part of the converter such as Volt-VAR, Maximum Power Point Tracking (MPPT), and variable power factor, making the Capstone project be dubbed as "Smart Inverter". In this paper, I elaborate on the entire process of my research and simulation, through the design and layout of the PCB board to milling, soldering and testing. That was my contribution to the capstone project. After testing the board, it was concluded that although the inverter was intended to be the very inexpensive, some electrical and design principles could not be compromised. The converter did successfully invert DC power to AC, but it was only at low voltage levels; it could not withstand the higher voltages. This roadblock stymied the testing of advanced functionalities, paving way for an avenue of further research and implementation.
ContributorsAsigbekye, John (Author) / Ayyanar, Raja (Thesis director) / Sedillo, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137646-Thumbnail Image.png
Description
The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The

The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The first three months were spent researching and selecting suitable IC's and external components (e.g. solar panel, batteries, etc.). Then, the next couple of months were spent ordering specific materials and equipment for the construction of our prototype. Finally, the last two months were used to build a working prototype, with a substantial amount of time used for perfecting our system's packaging and operation. This report will consist of a detailed discussion of our team's research, design activities, prototype implementation, final budget, and final schedule. Technical discussion of the concepts behind our design will assist with understanding the design activities and prototype implementation sections that will follow. Due to the generous funding of the group from the Barrett Honors College, our overall budget available for the project was $1600. Of that amount, only $334.51 was spent on the actual system components, with $829.42 being spent on the equipment and materials needed for the testing and construction of the prototype. As far as the schedule goes, we are essentially done with the project. The only tasks left to finish are a successful defense of the project at the oral presentation on Friday, 29 March 2013, followed by a successful demo on 26 April 2013.
ContributorsTroyer, Nicole L. (Co-author) / Shtayer, Idan (Co-author) / Guise, Chris (Co-author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Goodnick, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
135917-Thumbnail Image.png
Description
Wire connected solar cells are a promising new technology that can increase the efficiency and reduce the cost of solar modules. The use of wire rather than ribbon bus bars can lead to reduced shading, better light trapping, and reduced material costs, all while eliminating the need for soldering. This

Wire connected solar cells are a promising new technology that can increase the efficiency and reduce the cost of solar modules. The use of wire rather than ribbon bus bars can lead to reduced shading, better light trapping, and reduced material costs, all while eliminating the need for soldering. This research first analyzes the optimal wire gauge to reduce cracking and improve efficiency. Wire sizes between 20 AWG and 28 AWG were tested, with the optimal size being between 24 AWG and 26 AWG for the ethylene vinyl acetate (EVA) layer used in the module. A polyethylene sheet was then added between the wires and EVA layer to prevent the EVA from running underneath the wires during lamination, ultimately allowing for a more uniform contact and only a slight reduction in quantum efficiency. Then, a comparison between tinned copper wires and indium coated copper wires is shown. A mini-module efficiency of 20.0% has been achieved using tinned copper wires, while indium coated copper wires have produced a mini-module efficiency of 21.2%. Thus, tinned copper wires can be a viable alternative to indium coated copper wires, depending on the needs of the customers and the current price of indium. The module design throughout the research utilizes a planar assembly method, which improves the ease of manufacturing for wire interconnection technology. A two-cell base component is constructed and shown, with the intended future application of making large wire connected modules. Finally, wire applications in both single-cell and four-cell flexible modules are explored, with an efficiency of 18.65% achieved on a single-cell, flexible, heterojunction solar module using wire interconnections. A fully flexible four-cell string is developed, and future recommendations for related research are included.
ContributorsTyler, Kevin Daniel (Author) / Bowden, Stuart (Thesis director) / Herasimenka, Stanislau (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135872-Thumbnail Image.png
Description
The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the flaws in his golf swing. In addition, the application is

The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the flaws in his golf swing. In addition, the application is more personalized than existing devices and tailored to the individual based on his level of experience. The analyzer consists of an accelerometer, gyroscope, magnetometer, vibration motor, and microcontroller that are connected on a board that attaches to the top of the shaft of a golf club, fitting inside a 3D printed case. The team has assembled all of the necessary hardware, and is able to successfully display critical parameters of a golf putt, as well as send instant feedback to the user. The final budget for this project was $378.24
ContributorsKaur, Hansneet (Co-author) / Cox, Jeremy (Co-author) / Farnsworth, Chad (Co-author) / Zorob, Nabil (Co-author) / Chae, Junseok (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148033-Thumbnail Image.png
Description

Every communication system has a receiver and a transmitter. Irrespective if it is wired or wireless.The future of wireless communication consists of a massive number of transmitters and receivers. The question arises, can we use computer vision to help wireless communication? To satisfy the high data requirement, a large number

Every communication system has a receiver and a transmitter. Irrespective if it is wired or wireless.The future of wireless communication consists of a massive number of transmitters and receivers. The question arises, can we use computer vision to help wireless communication? To satisfy the high data requirement, a large number of antennas are required. The devices that employ large-antenna arrays have other sensors such as RGB camera, depth camera, or LiDAR sensors.These vision sensors help us overcome the non-trivial wireless communication challenges, such as beam blockage prediction and hand-over prediction.This is further motivated by the recent advances in deep learning and computer vision that can extract high-level semantics from complex visual scenes, and the increasing interest of leveraging machine/deep learning tools in wireless communication problems.[1] <br/><br/>The research was focused solely based on technology like 3D cameras,object detection and object tracking using Computer vision and compression techniques. The main objective of using computer vision was to make Milli-meter Wave communication more robust, and to collect more data for the machine learning algorithms. Pre-build lossless and lossy compression algorithms, such as FFMPEG, were used in the research. An algorithm was developed that could use 3D cameras and machine learning models such as YOLOV3, to track moving objects using servo motors and low powered computers like the raspberry pi or the Jetson Nano. In other words, the receiver could track the highly mobile transmitter in 1 dimension using a 3D camera. Not only that, during the research, the transmitter was loaded on a DJI M600 pro drone, and then machine learning and object tracking was used to track the highly mobile drone. In order to build this machine learning model and object tracker, collecting data like depth, RGB images and position coordinates were the first yet the most important step. GPS coordinates from the DJI M600 were also pulled and were successfully plotted on google earth. This proved to be very useful during data collection using a drone and for the future applications of position estimation for a drone using machine learning. <br/><br/>Initially, images were taken from transmitter camera every second,and those frames were then converted to a text file containing hex-decimal values. Each text file was then transmitted from the transmitter to receiver, and on the receiver side, a python code converted the hex-decimal to JPG. This would give an efect of real time video transmission. However, towards the end of the research, an industry standard, real time video was streamed using pre-built FFMPEG modules, GNU radio and Universal Software Radio Peripheral (USRP). The transmitter camera was a PI-camera. More details will be discussed as we further dive deep into this research report.

ContributorsSeth, Madhav (Author) / Alkhateeb, Ahmed (Thesis director) / Alrabeiah, Muhammad (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132279-Thumbnail Image.png
Description
Energy poverty is the lack of access to the basic energy resources needed for human development. Fossil fuels, through their heavy emissions and transience, are slowly but surely leaving room for change in the energy sector as renewable energy sources rise to the challenge of sustainable, clean, and cost-efficient energy

Energy poverty is the lack of access to the basic energy resources needed for human development. Fossil fuels, through their heavy emissions and transience, are slowly but surely leaving room for change in the energy sector as renewable energy sources rise to the challenge of sustainable, clean, and cost-efficient energy production. Because it is mostly located in rural areas, solutions crafted against energy poverty need to be appropriate for those areas and their development objectives. As top contenders, photovoltaics insertion in the energy market has largely soared creating, therefore, a need for its distributed energy resources to interconnect appropriately to the area electrical power system. EEE Senior Design Team 11 saw in this the need to design an advanced photovoltaic inverter with those desired grid functions but also leveraging the technological superiority of wide bandgap devices over silicon semiconductors. The honors creative project is an integral part of the senior design capstone project for Team 11. It has a two-front approach, first exploring the IEEE 1547-2018 standard on distributed energy resources; then focusing on the author’s personal contribution to the aforementioned senior design project: digital signal processing and grid support implementation. This report serves as an accompanying write up to the creative project.
ContributorsTall, Ndeye Maty (Author) / Ayyanar, Raja (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05