Matching Items (2)
135740-Thumbnail Image.png
Description
Psoriasis is a skin disease that affects millions of individuals. Genetic risk factors for psoriasis include a common deletion of two late cornified envelope (LCE) genes (LCE3B and LCE3C) located within a cluster of genes expressed during epithelial differentiation and skin repair. It was previously discovered that treatment with 1,25-dihydroxyvitamin

Psoriasis is a skin disease that affects millions of individuals. Genetic risk factors for psoriasis include a common deletion of two late cornified envelope (LCE) genes (LCE3B and LCE3C) located within a cluster of genes expressed during epithelial differentiation and skin repair. It was previously discovered that treatment with 1,25-dihydroxyvitamin D3 (1,25D) or analogs thereof can improve psoriasis symptoms in many patients, but the molecular mechanisms for this action are largely unknown. Our laboratory previously showed that 1,25D as well as low affinity ligands for the vitamin D receptor (VDR), such as delphinidin and cyanidin, are capable of upregulating the remaining LCE3A, -3D, and -3E genes to potentially compensate for the loss of LCE3B and -3C in promoting skin repair. In the current study, DHA and curcumin were tested and found to also upregulate LCE3 transcripts in a dose-dependent manner. To investigate other potential target genes for 1,25D and DHA, we tested JunB, for which low or absent expression has been reported to cause or be associated with psoriatic lesions. Our experiments showed a trend for an upregulation of JunB mRNA after DHA treatment, potentially providing benefit for psoriasis patients. Although our hypothesis is that DHA functions as a vitamin D receptor ligand to mediate upregulation of JunB and LCE3 genes, other investigators have assumed that DHA actions in skin are mediated via PPAR isoforms. We therefore utilized a selective ligand for PPAR delta (GW501516) to determine whether PPAR delta, the primary PPAR isoform in keratinocytes, is a mediator of DHA-induced LCE3 gene activation. Although a modest upregulation of LCE3 genes was seen after treatment with GW501516, our findings are still consistent with DHA acting primarily as a VDR ligand. Our results not only provide additional information about the ability of VDR ligands to upregulate specific skin genes with relevance for skin repair, but also may help provide a molecular basis for testing improved treatments for mild to moderate psoriasis.
ContributorsKarrys, Amitis (Author) / Jurutka, Peter (Thesis director) / Whitfield, Kerr (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131368-Thumbnail Image.png
Description
The retinoid-X receptor (RXR) can form heterodimers with both the retinoic-acid
receptor (RAR) and vitamin D receptor (VDR). The RXR/RAR dimer is activated by ligand all
trans retinoic acid (ATRA), which culminates in gut-specific effector T cell migration. Similarly,
the VDR/RXR dimer binds 1,25(OH)2D3 to cause skin-specific effector T cell migration.

The retinoid-X receptor (RXR) can form heterodimers with both the retinoic-acid
receptor (RAR) and vitamin D receptor (VDR). The RXR/RAR dimer is activated by ligand all
trans retinoic acid (ATRA), which culminates in gut-specific effector T cell migration. Similarly,
the VDR/RXR dimer binds 1,25(OH)2D3 to cause skin-specific effector T cell migration.
Targeted migration is a potent addition to current vaccines, as it would induce activated T cell
trafficking to appropriate areas of the immune system and ensure optimal stimulation (40).
ATRA, while in use clinically, is limited by toxicity and chemical instability. Rexinoids
are stable, synthetically developed ligands specific for the RXR. We have previously shown that
select rexinoids can enhance upregulation of gut tropic CCR9 receptors on effector T cells.
However, it is important to establish whether these cells can actually migrate, to show the
potential of rexinoids as vaccine adjuvants that can cause gut specific T cell migration.
Additionally, since the RXR is a major contributor to VDR-mediated transcription and
epidermotropism (15), it is worth investigating whether these compounds can also function as
adjuvants that promote migration by increasing expression of skin tropic CCR10 receptors on T
cells.
Prior experiments have demonstrated that select rexinoids can induce gut tropic migration
of CD8+ T cells in an in vitro assay and are comparable in effectiveness to ATRA (7). The effect
of rexinoids on CD4+ T cells is unknown however, so the aim of this project was to determine if
rexinoids can cause gut tropic migration in CD4+ T cells to a similar extent. A secondary aim
was to investigate whether varying concentrations in 1,25-Dihydroxyvitamin D3 can be linked to
increasing CCR10 upregulation on Jurkat CD4+ T cells, with the future aim to combine 1,25
Dihydroxyvitamin D3 with rexinoids.
These hypotheses were tested using murine splenocytes for the migration experiment, and
human Jurkat CD4+ T cells for the vitamin D experiment. Migration was assessed using a
Transwell chemotaxis assay. Our findings support the potential of rexinoids as compounds
capable of causing gut-tropic migration in murine CD4+ T cells in vitro, like ATRA. We did not
observe conclusive evidence that vitamin D3 causes upregulated CCR10 expression, but this
experiment must be repeated with a human primary T cell line.
ContributorsDebray, Hannah Zara (Co-author) / Debray, Hannah (Co-author) / Blattman, Joseph (Thesis director) / Jurutka, Peter (Committee member) / Manhas, Kavita (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05