Matching Items (4)
Filtering by

Clear all filters

171505-Thumbnail Image.png
Description
The impact of Artificial Intelligence (AI) has increased significantly in daily life. AI is taking big strides towards moving into areas of life that are critical such as healthcare but, also into areas such as entertainment and leisure. Deep neural networks have been pivotal in making all these advancements possible.

The impact of Artificial Intelligence (AI) has increased significantly in daily life. AI is taking big strides towards moving into areas of life that are critical such as healthcare but, also into areas such as entertainment and leisure. Deep neural networks have been pivotal in making all these advancements possible. But, a well-known problem with deep neural networks is the lack of explanations for the choices it makes. To combat this, several methods have been tried in the field of research. One example of this is assigning rankings to the individual features and how influential they are in the decision-making process. In contrast a newer class of methods focuses on Concept Activation Vectors (CAV) which focus on extracting higher-level concepts from the trained model to capture more information as a mixture of several features and not just one. The goal of this thesis is to employ concepts in a novel domain: to explain how a deep learning model uses computer vision to classify music into different genres. Due to the advances in the field of computer vision with deep learning for classification tasks, it is rather a standard practice now to convert an audio clip into corresponding spectrograms and use those spectrograms as image inputs to the deep learning model. Thus, a pre-trained model can classify the spectrogram images (representing songs) into musical genres. The proposed explanation system called “Why Pop?” tries to answer certain questions about the classification process such as what parts of the spectrogram influence the model the most, what concepts were extracted and how are they different for different classes. These explanations aid the user gain insights into the model’s learnings, biases, and the decision-making process.
ContributorsSharma, Shubham (Author) / Bryan, Chris (Thesis advisor) / McDaniel, Troy (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2022
189385-Thumbnail Image.png
Description
Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of

Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of model vulnerabilities. The complexity of machine learning models, along with the extensive data sets they analyze, can result in unpredictable and unintended outcomes. Model vulnerabilities may manifest due to errors in data input, algorithm design, or model deployment, which can have significant implications for both individuals and society. To prevent such negative outcomes, it is imperative to identify model vulnerabilities at an early stage in the development process. This will aid in guaranteeing the integrity, dependability, and safety of the models, thus mitigating potential risks and enabling the full potential of these technologies to be realized. However, enumerating vulnerabilities can be challenging due to the complexity of the real-world environment. Visual analytics, situated at the intersection of human-computer interaction, computer graphics, and artificial intelligence, offers a promising approach for achieving high interpretability of complex black-box models, thus reducing the cost of obtaining insights into potential vulnerabilities of models. This research is devoted to designing novel visual analytics methods to support the identification and analysis of model vulnerabilities. Specifically, generalizable visual analytics frameworks are instantiated to explore vulnerabilities in machine learning models concerning security (adversarial attacks and data perturbation) and fairness (algorithmic bias). In the end, a visual analytics approach is proposed to enable domain experts to explain and diagnose the model improvement of addressing identified vulnerabilities of machine learning models in a human-in-the-loop fashion. The proposed methods hold the potential to enhance the security and fairness of machine learning models deployed in critical real-world applications.
ContributorsXie, Tiankai (Author) / Maciejewski, Ross (Thesis advisor) / Liu, Huan (Committee member) / Bryan, Chris (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2023
171520-Thumbnail Image.png
Description
The drone industry is worth nearly 50 billion dollars in the public sector, and drone flight anomalies can cost up to 12 million dollars per drone. The project's objective is to explore various machine-learning techniques to identify anomalies in drone flight and express these anomalies effectively by creating relevant visualizations.

The drone industry is worth nearly 50 billion dollars in the public sector, and drone flight anomalies can cost up to 12 million dollars per drone. The project's objective is to explore various machine-learning techniques to identify anomalies in drone flight and express these anomalies effectively by creating relevant visualizations. The research goal is to solve the problem of finding anomalies inside drones to determine severity levels. The solution was visualization and statistical models, and the contribution was visualizations, patterns, models, and the interface.
ContributorsElenes Cazares, Jose R (Author) / Bryan, Chris (Thesis advisor) / Banerjee, Ayan (Committee member) / Gonzalez Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2022
131311-Thumbnail Image.png
Description
This thesis serves as a baseline for the potential for prediction through machine learning (ML) in baseball. Hopefully, it also will serve as motivation for future work to expand and reach the potential of sabermetrics, advanced Statcast data and machine learning. The problem this thesis attempts to solve is predicting

This thesis serves as a baseline for the potential for prediction through machine learning (ML) in baseball. Hopefully, it also will serve as motivation for future work to expand and reach the potential of sabermetrics, advanced Statcast data and machine learning. The problem this thesis attempts to solve is predicting the outcome of a pitch. Given proper pitch data and situational data, is it possible to predict the result or outcome of a pitch? The result or outcome refers to the specific outcome of a pitch, beyond ball or strike, but if the hitter puts the ball in play for a double, this thesis shows how I attempted to predict that type of outcome. Before diving into my methods, I take a deep look into sabermetrics, advanced statistics and the history of the two in Major League Baseball. After this, I describe my implemented machine learning experiment. First, I found a dataset that is suitable for training a pitch prediction model, I then analyzed the features and used some feature engineering to select a set of 16 features, and finally, I trained and tested a pair of ML models on the data. I used a decision tree classifier and random forest classifier to test the data. I attempted to us a long short-term memory to improve my score, but came up short. Each classifier performed at around 60% accuracy. I also experimented using a neural network approach with a long short-term memory (LSTM) model, but this approach requires more feature engineering to beat the simpler classifiers. In this thesis, I show examples of five hitters that I test the models on and the accuracy for each hitter. This work shows promise that advanced classification models (likely requiring more feature engineering) can provide even better prediction outcomes, perhaps with 70% accuracy or higher! There is much potential for future work and to improve on this thesis, mainly through the proper construction of a neural network, more in-depth feature analysis/selection/extraction, and data visualization.
ContributorsGoodman, Avi (Author) / Bryan, Chris (Thesis director) / Hsiao, Sharon (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05