Matching Items (38)
Filtering by

Clear all filters

151716-Thumbnail Image.png
Description
The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a

The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a large amount of data is cheap and easy, annotating them with class labels is an expensive process in terms of time, labor and human expertise. This has paved the way for research in the field of active learning. Such algorithms automatically select the salient and exemplar instances from large quantities of unlabeled data and are effective in reducing human labeling effort in inducing classification models. To utilize the possible presence of multiple labeling agents, there have been attempts towards a batch mode form of active learning, where a batch of data instances is selected simultaneously for manual annotation. This dissertation is aimed at the development of novel batch mode active learning algorithms to reduce manual effort in training classification models in real world multimedia pattern recognition applications. Four major contributions are proposed in this work: $(i)$ a framework for dynamic batch mode active learning, where the batch size and the specific data instances to be queried are selected adaptively through a single formulation, based on the complexity of the data stream in question, $(ii)$ a batch mode active learning strategy for fuzzy label classification problems, where there is an inherent imprecision and vagueness in the class label definitions, $(iii)$ batch mode active learning algorithms based on convex relaxations of an NP-hard integer quadratic programming (IQP) problem, with guaranteed bounds on the solution quality and $(iv)$ an active matrix completion algorithm and its application to solve several variants of the active learning problem (transductive active learning, multi-label active learning, active feature acquisition and active learning for regression). These contributions are validated on the face recognition and facial expression recognition problems (which are commonly encountered in real world applications like robotics, security and assistive technology for the blind and the visually impaired) and also on collaborative filtering applications like movie recommendation.
ContributorsChakraborty, Shayok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Balasubramanian, Vineeth N. (Committee member) / Li, Baoxin (Committee member) / Mittelmann, Hans (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
150181-Thumbnail Image.png
Description
Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs

Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer.
ContributorsVenkatesan, Ashok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
156084-Thumbnail Image.png
Description
The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.
ContributorsChandakkar, Parag Shridhar (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
156586-Thumbnail Image.png
Description
Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond

Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond factual recall of the recognized components and includes reasoning and thinking beyond what can be seen (or perceived). Understanding is often evaluated by asking questions of increasing difficulty. Thus, the expected functionalities of an intelligent Image Understanding system can be expressed in terms of the functionalities that are required to answer questions about an image. Answering questions about images require primarily three components: Image Understanding, question (natural language) understanding, and reasoning based on knowledge. Any question, asking beyond what can be directly seen, requires modeling of commonsense (or background/ontological/factual) knowledge and reasoning.

Knowledge and reasoning have seen scarce use in image understanding applications. In this thesis, we demonstrate the utilities of incorporating background knowledge and using explicit reasoning in image understanding applications. We first present a comprehensive survey of the previous work that utilized background knowledge and reasoning in understanding images. This survey outlines the limited use of commonsense knowledge in high-level applications. We then present a set of vision and reasoning-based methods to solve several applications and show that these approaches benefit in terms of accuracy and interpretability from the explicit use of knowledge and reasoning. We propose novel knowledge representations of image, knowledge acquisition methods, and a new implementation of an efficient probabilistic logical reasoning engine that can utilize publicly available commonsense knowledge to solve applications such as visual question answering, image puzzles. Additionally, we identify the need for new datasets that explicitly require external commonsense knowledge to solve. We propose the new task of Image Riddles, which requires a combination of vision, and reasoning based on ontological knowledge; and we collect a sufficiently large dataset to serve as an ideal testbed for vision and reasoning research. Lastly, we propose end-to-end deep architectures that can combine vision, knowledge and reasoning modules together and achieve large performance boosts over state-of-the-art methods.
ContributorsAditya, Somak (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Thesis advisor) / Aloimonos, Yiannis (Committee member) / Lee, Joohyung (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2018
156468-Thumbnail Image.png
Description
With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and

With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and storage resources. Such models can be compressed and reduced in order to be placed on edge devices, but they may loose their capability and may not generalize and perform well compared to large models. Recent works used knowledge transfer techniques to transfer information from a large network (termed teacher) to a small one (termed student) in order to improve the performance of the latter. This approach seems to be promising for learning on edge devices, but a thorough investigation on its effectiveness is lacking.

The purpose of this work is to provide an extensive study on the performance (both in terms of accuracy and convergence speed) of knowledge transfer, considering different student-teacher architectures, datasets and different techniques for transferring knowledge from teacher to student.

A good performance improvement is obtained by transferring knowledge from both the intermediate layers and last layer of the teacher to a shallower student. But other architectures and transfer techniques do not fare so well and some of them even lead to negative performance impact. For example, a smaller and shorter network, trained with knowledge transfer on Caltech 101 achieved a significant improvement of 7.36\% in the accuracy and converges 16 times faster compared to the same network trained without knowledge transfer. On the other hand, smaller network which is thinner than the teacher network performed worse with an accuracy drop of 9.48\% on Caltech 101, even with utilization of knowledge transfer.
ContributorsSistla, Ragini (Author) / Zhao, Ming (Thesis advisor, Committee member) / Li, Baoxin (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
156747-Thumbnail Image.png
Description
Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use

Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use due to difficulty in training diverse experts and high computational requirements. This work presents modifications of the mixture of experts formulation that use domain knowledge to improve training, and incorporate parameter sharing among experts to reduce computational requirements.

First, this work presents an application of mixture of experts models for quality robust visual recognition. First it is shown that human subjects outperform deep neural networks on classification of distorted images, and then propose a model, MixQualNet, that is more robust to distortions. The proposed model consists of ``experts'' that are trained on a particular type of image distortion. The final output of the model is a weighted sum of the expert models, where the weights are determined by a separate gating network. The proposed model also incorporates weight sharing to reduce the number of parameters, as well as increase performance.



Second, an application of mixture of experts to predict visual saliency is presented. A computational saliency model attempts to predict where humans will look in an image. In the proposed model, each expert network is trained to predict saliency for a set of closely related images. The final saliency map is computed as a weighted mixture of the expert networks' outputs, with weights determined by a separate gating network. The proposed model achieves better performance than several other visual saliency models and a baseline non-mixture model.

Finally, this work introduces a saliency model that is a weighted mixture of models trained for different levels of saliency. Levels of saliency include high saliency, which corresponds to regions where almost all subjects look, and low saliency, which corresponds to regions where some, but not all subjects look. The weighted mixture shows improved performance compared with baseline models because of the diversity of the individual model predictions.
ContributorsDodge, Samuel Fuller (Author) / Karam, Lina (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2018
156610-Thumbnail Image.png
Description
Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement.

To overcome these challenges, recent works have extensively investigated model compression techniques such

Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement.

To overcome these challenges, recent works have extensively investigated model compression techniques such as element-wise sparsity, structured sparsity and quantization. While most of these works have applied these compression techniques in isolation, there have been very few studies on application of quantization and structured sparsity together on a DNN model.

This thesis co-optimizes structured sparsity and quantization constraints on DNN models during training. Specifically, it obtains optimal setting of 2-bit weight and 2-bit activation coupled with 4X structured compression by performing combined exploration of quantization and structured compression settings. The optimal DNN model achieves 50X weight memory reduction compared to floating-point uncompressed DNN. This memory saving is significant since applying only structured sparsity constraints achieves 2X memory savings and only quantization constraints achieves 16X memory savings. The algorithm has been validated on both high and low capacity DNNs and on wide-sparse and deep-sparse DNN models. Experiments demonstrated that deep-sparse DNN outperforms shallow-dense DNN with varying level of memory savings depending on DNN precision and sparsity levels. This work further proposed a Pareto-optimal approach to systematically extract optimal DNN models from a huge set of sparse and dense DNN models. The resulting 11 optimal designs were further evaluated by considering overall DNN memory which includes activation memory and weight memory. It was found that there is only a small change in the memory footprint of the optimal designs corresponding to the low sparsity DNNs. However, activation memory cannot be ignored for high sparsity DNNs.
ContributorsSrivastava, Gaurav (Author) / Seo, Jae-Sun (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
157202-Thumbnail Image.png
Description
In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an

In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an identification network, a new sampling-based motion planner, Learn and Link, is introduced. This planner leverages critical regions to overcome the limitations of uniform sampling while still maintaining guarantees of correctness inherent to sampling-based algorithms. Learn and Link is evaluated against planners from the Open Motion Planning Library (OMPL) on an extensive suite of challenging navigation planning problems. This work shows that critical areas of an environment are learnable, and can be used by Learn and Link to solve MP problems with far less planning time than existing sampling-based planners.
ContributorsMolina, Daniel, M.S (Author) / Srivastava, Siddharth (Thesis advisor) / Li, Baoxin (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2019
157015-Thumbnail Image.png
Description
Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data,

Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data, robustness to noise in previously unseen data and high inference accuracy. With the ability to learn useful features from raw sensor data, deep learning algorithms have out-performed tradinal AI algorithms and pushed the boundaries of what can be achieved with AI. In this work, we demonstrate the power of deep learning by developing a neural network to automatically detect cough instances from audio recorded in un-constrained environments. For this, 24 hours long recordings from 9 dierent patients is collected and carefully labeled by medical personel. A pre-processing algorithm is proposed to convert event based cough dataset to a more informative dataset with start and end of coughs and also introduce data augmentation for regularizing the training procedure. The proposed neural network achieves 92.3% leave-one-out accuracy on data captured in real world.

Deep neural networks are composed of multiple layers that are compute/memory intensive. This makes it difficult to execute these algorithms real-time with low power consumption using existing general purpose computers. In this work, we propose hardware accelerators for a traditional AI algorithm based on random forest trees and two representative deep convolutional neural networks (AlexNet and VGG). With the proposed acceleration techniques, ~ 30x performance improvement was achieved compared to CPU for random forest trees. For deep CNNS, we demonstrate that much higher performance can be achieved with architecture space exploration using any optimization algorithms with system level performance and area models for hardware primitives as inputs and goal of minimizing latency with given resource constraints. With this method, ~30GOPs performance was achieved for Stratix V FPGA boards.

Hardware acceleration of DL algorithms alone is not always the most ecient way and sucient to achieve desired performance. There is a huge headroom available for performance improvement provided the algorithms are designed keeping in mind the hardware limitations and bottlenecks. This work achieves hardware-software co-optimization for Non-Maximal Suppression (NMS) algorithm. Using the proposed algorithmic changes and hardware architecture

With CMOS scaling coming to an end and increasing memory bandwidth bottlenecks, CMOS based system might not scale enough to accommodate requirements of more complicated and deeper neural networks in future. In this work, we explore RRAM crossbars and arrays as compact, high performing and energy efficient alternative to CMOS accelerators for deep learning training and inference. We propose and implement RRAM periphery read and write circuits and achieved ~3000x performance improvement in online dictionary learning compared to CPU.

This work also examines the realistic RRAM devices and their non-idealities. We do an in-depth study of the effects of RRAM non-idealities on inference accuracy when a pretrained model is mapped to RRAM based accelerators. To mitigate this issue, we propose Random Sparse Adaptation (RSA), a novel scheme aimed at tuning the model to take care of the faults of the RRAM array on which it is mapped. Our proposed method can achieve inference accuracy much higher than what traditional Read-Verify-Write (R-V-W) method could achieve. RSA can also recover lost inference accuracy 100x ~ 1000x faster compared to R-V-W. Using 32-bit high precision RSA cells, we achieved ~10% higher accuracy using fautly RRAM arrays compared to what can be achieved by mapping a deep network to an 32 level RRAM array with no variations.
ContributorsMohanty, Abinash (Author) / Cao, Yu (Thesis advisor) / Seo, Jae-Sun (Committee member) / Vrudhula, Sarma (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2018
154757-Thumbnail Image.png
Description
Speech recognition and keyword detection are becoming increasingly popular applications for mobile systems. While deep neural network (DNN) implementation of these systems have very good performance,

they have large memory and compute resource requirements, making their implementation on a mobile device quite challenging. In this thesis, techniques to reduce the

Speech recognition and keyword detection are becoming increasingly popular applications for mobile systems. While deep neural network (DNN) implementation of these systems have very good performance,

they have large memory and compute resource requirements, making their implementation on a mobile device quite challenging. In this thesis, techniques to reduce the memory and computation cost

of keyword detection and speech recognition networks (or DNNs) are presented.

The first technique is based on representing all weights and biases by a small number of bits and mapping all nodal computations into fixed-point ones with minimal degradation in the

accuracy. Experiments conducted on the Resource Management (RM) database show that for the keyword detection neural network, representing the weights by 5 bits results in a 6 fold reduction in memory compared to a floating point implementation with very little loss in performance. Similarly, for the speech recognition neural network, representing the weights by 6 bits results in a 5 fold reduction in memory while maintaining an error rate similar to a floating point implementation. Additional reduction in memory is achieved by a technique called weight pruning,

where the weights are classified as sensitive and insensitive and the sensitive weights are represented with higher precision. A combination of these two techniques helps reduce the memory

footprint by 81 - 84% for speech recognition and keyword detection networks respectively.

Further reduction in memory size is achieved by judiciously dropping connections for large blocks of weights. The corresponding technique, termed coarse-grain sparsification, introduces

hardware-aware sparsity during DNN training, which leads to efficient weight memory compression and significant reduction in the number of computations during classification without

loss of accuracy. Keyword detection and speech recognition DNNs trained with 75% of the weights dropped and classified with 5-6 bit weight precision effectively reduced the weight memory

requirement by ~95% compared to a fully-connected network with double precision, while showing similar performance in keyword detection accuracy and word error rate.
ContributorsArunachalam, Sairam (Author) / Chakrabarti, Chaitali (Thesis advisor) / Seo, Jae-Sun (Thesis advisor) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2016