Matching Items (6)
Filtering by

Clear all filters

171505-Thumbnail Image.png
Description
The impact of Artificial Intelligence (AI) has increased significantly in daily life. AI is taking big strides towards moving into areas of life that are critical such as healthcare but, also into areas such as entertainment and leisure. Deep neural networks have been pivotal in making all these advancements possible.

The impact of Artificial Intelligence (AI) has increased significantly in daily life. AI is taking big strides towards moving into areas of life that are critical such as healthcare but, also into areas such as entertainment and leisure. Deep neural networks have been pivotal in making all these advancements possible. But, a well-known problem with deep neural networks is the lack of explanations for the choices it makes. To combat this, several methods have been tried in the field of research. One example of this is assigning rankings to the individual features and how influential they are in the decision-making process. In contrast a newer class of methods focuses on Concept Activation Vectors (CAV) which focus on extracting higher-level concepts from the trained model to capture more information as a mixture of several features and not just one. The goal of this thesis is to employ concepts in a novel domain: to explain how a deep learning model uses computer vision to classify music into different genres. Due to the advances in the field of computer vision with deep learning for classification tasks, it is rather a standard practice now to convert an audio clip into corresponding spectrograms and use those spectrograms as image inputs to the deep learning model. Thus, a pre-trained model can classify the spectrogram images (representing songs) into musical genres. The proposed explanation system called “Why Pop?” tries to answer certain questions about the classification process such as what parts of the spectrogram influence the model the most, what concepts were extracted and how are they different for different classes. These explanations aid the user gain insights into the model’s learnings, biases, and the decision-making process.
ContributorsSharma, Shubham (Author) / Bryan, Chris (Thesis advisor) / McDaniel, Troy (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2022
158117-Thumbnail Image.png
Description
Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability

Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability to recognize object categories based on textual descriptions of objects and previous visual knowledge, the research community has extensively pursued the area of zero-shot learning. In this area of research, machine vision models are trained to recognize object categories that are not observed during the training process. Zero-shot learning models leverage textual information to transfer visual knowledge from seen object categories in order to recognize unseen object categories.

Generative models have recently gained popularity as they synthesize unseen visual features and convert zero-shot learning into a classical supervised learning problem. These generative models are trained using seen classes and are expected to implicitly transfer the knowledge from seen to unseen classes. However, their performance is stymied by overfitting towards seen classes, which leads to substandard performance in generalized zero-shot learning. To address this concern, this dissertation proposes a novel generative model that leverages the semantic relationship between seen and unseen categories and explicitly performs knowledge transfer from seen categories to unseen categories. Experiments were conducted on several benchmark datasets to demonstrate the efficacy of the proposed model for both zero-shot learning and generalized zero-shot learning. The dissertation also provides a unique Student-Teacher based generative model for zero-shot learning and concludes with future research directions in this area.
ContributorsVyas, Maunil Rohitbhai (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020
158120-Thumbnail Image.png
Description
Humans perceive the environment using multiple modalities like vision, speech (language), touch, taste, and smell. The knowledge obtained from one modality usually complements the other. Learning through several modalities helps in constructing an accurate model of the environment. Most of the current vision and language models are modality-specific and, in

Humans perceive the environment using multiple modalities like vision, speech (language), touch, taste, and smell. The knowledge obtained from one modality usually complements the other. Learning through several modalities helps in constructing an accurate model of the environment. Most of the current vision and language models are modality-specific and, in many cases, extensively use deep-learning based attention mechanisms for learning powerful representations. This work discusses the role of attention in associating vision and language for generating shared representation. Language Image Transformer (LIT) is proposed for learning multi-modal representations of the environment. It uses a training objective based on Contrastive Predictive Coding (CPC) to maximize the Mutual Information (MI) between the visual and linguistic representations. It learns the relationship between the modalities using the proposed cross-modal attention layers. It is trained and evaluated using captioning datasets, MS COCO, and Conceptual Captions. The results and the analysis offers a perspective on the use of Mutual Information Maximisation (MIM) for generating generalizable representations across multiple modalities.
ContributorsRamakrishnan, Raghavendran (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth Kumar (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020
158127-Thumbnail Image.png
Description
Over the past decade, advancements in neural networks have been instrumental in achieving remarkable breakthroughs in the field of computer vision. One of the applications is in creating assistive technology to improve the lives of visually impaired people by making the world around them more accessible. A lot of research

Over the past decade, advancements in neural networks have been instrumental in achieving remarkable breakthroughs in the field of computer vision. One of the applications is in creating assistive technology to improve the lives of visually impaired people by making the world around them more accessible. A lot of research in convolutional neural networks has led to human-level performance in different vision tasks including image classification, object detection, instance segmentation, semantic segmentation, panoptic segmentation and scene text recognition. All the before mentioned tasks, individually or in combination, have been used to create assistive technologies to improve accessibility for the blind.

This dissertation outlines various applications to improve accessibility and independence for visually impaired people during shopping by helping them identify products in retail stores. The dissertation includes the following contributions; (i) A dataset containing images of breakfast-cereal products and a classifier using a deep neural (ResNet) network; (ii) A dataset for training a text detection and scene-text recognition model; (iii) A model for text detection and scene-text recognition to identify product images using a user-controlled camera; (iv) A dataset of twenty thousand products with product information and related images that can be used to train and test a system designed to identify products.
ContributorsPatel, Akshar (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020
158259-Thumbnail Image.png
Description
In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction space with new data, they run into the problem of

In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction space with new data, they run into the problem of catastrophic forgetting, where the model forgets previously learned knowledge as it overfits to the newly available data. Incremental learning algorithms enable deep neural networks to prevent catastrophic forgetting by retaining knowledge of previously observed data while also learning from newly available data.

This thesis presents three models for incremental learning; (i) Design of an algorithm for generative incremental learning using a pre-trained deep neural network classifier; (ii) Development of a hashing based clustering algorithm for efficient incremental learning; (iii) Design of a student-teacher coupled neural network to distill knowledge for incremental learning. The proposed algorithms were evaluated using popular vision datasets for classification tasks. The thesis concludes with a discussion about the feasibility of using these techniques to transfer information between networks and also for incremental learning applications.
ContributorsPatil, Rishabh (Author) / Venkateswara, Hemanth (Thesis advisor) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020
158180-Thumbnail Image.png
Description
Humans have an excellent ability to analyze and process information from multiple domains. They also possess the ability to apply the same decision-making process when the situation is familiar with their previous experience.

Inspired by human's ability to remember past experiences and apply the same when a similar situation occurs,

Humans have an excellent ability to analyze and process information from multiple domains. They also possess the ability to apply the same decision-making process when the situation is familiar with their previous experience.

Inspired by human's ability to remember past experiences and apply the same when a similar situation occurs, the research community has attempted to augment memory with Neural Network to store the previously learned information. Together with this, the community has also developed mechanisms to perform domain-specific weight switching to handle multiple domains using a single model. Notably, the two research fields work independently, and the goal of this dissertation is to combine their capabilities.

This dissertation introduces a Neural Network module augmented with two external memories, one allowing the network to read and write the information and another to perform domain-specific weight switching. Two learning tasks are proposed in this work to investigate the model performance - solving mathematics operations sequence and action based on color sequence identification. A wide range of experiments with these two tasks verify the model's learning capabilities.
ContributorsPatel, Deep Chittranjan (Author) / Ben Amor, Hani (Thesis advisor) / Banerjee, Ayan (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020