Matching Items (11)
Filtering by

Clear all filters

150534-Thumbnail Image.png
Description
Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is not suitable for defeasible reasoning due to its monotonic nature. The nonmonotonic formalisms that extend first-order logic, such as circumscription

Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is not suitable for defeasible reasoning due to its monotonic nature. The nonmonotonic formalisms that extend first-order logic, such as circumscription and default logic, are expressive but lack efficient implementations. The nonmonotonic formalisms that are based on the declarative logic programming approach, such as Answer Set Programming (ASP), have efficient implementations but are not expressive enough for representing and reasoning with open domains. This dissertation uses the first-order stable model semantics, which extends both first-order logic and ASP, to relate circumscription to ASP, and to integrate DLs and ASP, thereby partially overcoming the limitations of the formalisms. By exploiting the relationship between circumscription and ASP, well-known action formalisms, such as the situation calculus, the event calculus, and Temporal Action Logics, are reformulated in ASP. The advantages of these reformulations are shown with respect to the generality of the reasoning tasks that can be handled and with respect to the computational efficiency. The integration of DLs and ASP presented in this dissertation provides a framework for integrating rules and ontologies for the semantic web. This framework enables us to perform nonmonotonic reasoning with DL knowledge bases. Observing the need to integrate action theories and ontologies, the above results are used to reformulate the problem of integrating action theories and ontologies as a problem of integrating rules and ontologies, thus enabling us to use the computational tools developed in the context of the latter for the former.
ContributorsPalla, Ravi (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Kambhampati, Subbarao (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2012
156771-Thumbnail Image.png
Description
Reinforcement learning (RL) is a powerful methodology for teaching autonomous agents complex behaviors and skills. A critical component in most RL algorithms is the reward function -- a mathematical function that provides numerical estimates for desirable and undesirable states. Typically, the reward function must be hand-designed by a human expert

Reinforcement learning (RL) is a powerful methodology for teaching autonomous agents complex behaviors and skills. A critical component in most RL algorithms is the reward function -- a mathematical function that provides numerical estimates for desirable and undesirable states. Typically, the reward function must be hand-designed by a human expert and, as a result, the scope of a robot's autonomy and ability to safely explore and learn in new and unforeseen environments is constrained by the specifics of the designed reward function. In this thesis, I design and implement a stateful collision anticipation model with powerful predictive capability based upon my research of sequential data modeling and modern recurrent neural networks. I also develop deep reinforcement learning methods whose rewards are generated by self-supervised training and intrinsic signals. The main objective is to work towards the development of resilient robots that can learn to anticipate and avoid damaging interactions by combining visual and proprioceptive cues from internal sensors. The introduced solutions are inspired by pain pathways in humans and animals, because such pathways are known to guide decision-making processes and promote self-preservation. A new "robot dodge ball' benchmark is introduced in order to test the validity of the developed algorithms in dynamic environments.
ContributorsRichardson, Trevor W (Author) / Ben Amor, Heni (Thesis advisor) / Yang, Yezhou (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2018
157202-Thumbnail Image.png
Description
In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an

In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an identification network, a new sampling-based motion planner, Learn and Link, is introduced. This planner leverages critical regions to overcome the limitations of uniform sampling while still maintaining guarantees of correctness inherent to sampling-based algorithms. Learn and Link is evaluated against planners from the Open Motion Planning Library (OMPL) on an extensive suite of challenging navigation planning problems. This work shows that critical areas of an environment are learnable, and can be used by Learn and Link to solve MP problems with far less planning time than existing sampling-based planners.
ContributorsMolina, Daniel, M.S (Author) / Srivastava, Siddharth (Thesis advisor) / Li, Baoxin (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2019
157311-Thumbnail Image.png
Description
Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and

Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and efficient representations for many problem domains that require complex reasoning.

However, while ASP is effective on deterministic problem domains, it is not suitable for applications involving quantitative uncertainty, for example, those that require probabilistic reasoning. Furthermore, it is hard to utilize information that can be statistically induced from data with ASP problem modeling.

This dissertation presents the language LP^MLN, which is a probabilistic extension of the stable model semantics with the concept of weighted rules, inspired by Markov Logic. An LP^MLN program defines a probability distribution over "soft" stable models, which may not satisfy all rules, but the more rules with the bigger weights they satisfy, the bigger their probabilities. LP^MLN takes advantage of both ASP and Markov Logic in a single framework, allowing representation of problems that require both logical and probabilistic reasoning in an intuitive and elaboration tolerant way.

This dissertation establishes formal relations between LP^MLN and several other formalisms, discusses inference and weight learning algorithms under LP^MLN, and presents systems implementing the algorithms. LP^MLN systems can be used to compute other languages translatable into LP^MLN.

The advantage of LP^MLN for probabilistic reasoning is illustrated by a probabilistic extension of the action language BC+, called pBC+, defined as a high-level notation of LP^MLN for describing transition systems. Various probabilistic reasoning about transition systems, especially probabilistic diagnosis, can be modeled in pBC+ and computed using LP^MLN systems. pBC+ is further extended with the notion of utility, through a decision-theoretic extension of LP^MLN, and related with Markov Decision Process (MDP) in terms of policy optimization problems. pBC+ can be used to represent (PO)MDP in a succinct and elaboration tolerant way, which enables planning with (PO)MDP algorithms in action domains whose description requires rich KR constructs, such as recursive definitions and indirect effects of actions.
ContributorsWang, Yi (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Kambhampati, Subbarao (Committee member) / Natarajan, Sriraam (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2019
171959-Thumbnail Image.png
Description
Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from all walks of life using and working with these systems

Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from all walks of life using and working with these systems has also spurred a lot of interest in ensuring that AI systems can efficiently and effectively work and collaborate with their intended users. Chief among the efforts in this direction has been the pursuit of imbuing these agents with the ability to provide intuitive and useful explanations regarding their decisions and actions to end-users. In this dissertation, I will describe various works that I have done in the area of explaining sequential decision-making problems. Furthermore, I will frame the discussions of my work within a broader framework for understanding and analyzing explainable AI (XAI). My works herein tackle many of the core challenges related to explaining automated decisions to users including (1) techniques to address asymmetry in knowledge between the user and the system, (2) techniques to address asymmetry in inferential capabilities, and (3) techniques to address vocabulary mismatch.The dissertation will also describe the works I have done in generating interpretable behavior and policy summarization. I will conclude this dissertation, by using the framework of human-aware explanation as a lens to analyze and understand the current landscape of explainable planning.
ContributorsSreedharan, Sarath (Author) / Kambhampati, Subbarao (Thesis advisor) / Kim, Been (Committee member) / Smith, David E (Committee member) / Srivastava, Siddharth (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2022
Description
This research introduces Roblocks, a user-friendly system for learning Artificial Intelligence (AI) planning concepts using mobile manipulator robots. It uses a visual programming interface based on block-structured programming to make AI planning concepts easier to grasp for those who are new to robotics and AI planning. Users get to accomplish

This research introduces Roblocks, a user-friendly system for learning Artificial Intelligence (AI) planning concepts using mobile manipulator robots. It uses a visual programming interface based on block-structured programming to make AI planning concepts easier to grasp for those who are new to robotics and AI planning. Users get to accomplish any desired tasks by dynamically populating puzzle shaped blocks encoding the robot’s possible actions, allowing them to carry out tasks like navigation, planning, and manipulation by connecting blocks instead of writing code. Roblocks has two levels, where in the first level users are made to re-arrange a jumbled set of actions of a plan in the correct order so that a given goal could be achieved. In the second level, they select actions of their choice but at each step only those actions pertaining to the current state are made available to them, thereby pruning down the vast number of possible actions and suggesting only the truly feasible and relevant actions. Both of these levels have a simulation where the user plan is executed. Moreover, if the user plan is invalid or fails to achieve the given goal condition then an explanation for the failure is provided in simple English language. This makes it easier for everyone (especially for non-roboticists) to understand the cause of the failure.
ContributorsDave, Chirav (Author) / Srivastava, Siddharth (Thesis advisor) / Hsiao, Ihan (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2019
157926-Thumbnail Image.png
Description
In order for a robot to solve complex tasks in real world, it needs to compute discrete, high-level strategies that can be translated into continuous movement trajectories. These problems become increasingly difficult with increasing numbers of objects and domain constraints, as well as with the increasing degrees of freedom of

In order for a robot to solve complex tasks in real world, it needs to compute discrete, high-level strategies that can be translated into continuous movement trajectories. These problems become increasingly difficult with increasing numbers of objects and domain constraints, as well as with the increasing degrees of freedom of robotic manipulator arms.

The first part of this thesis develops and investigates new methods for addressing these problems through hierarchical task and motion planning for manipulation with a focus on autonomous construction of free-standing structures using precision-cut planks. These planks can be arranged in various orientations to design complex structures; reliably and autonomously building such structures from scratch is computationally intractable due to the long planning horizon and the infinite branching factor of possible grasps and placements that the robot could make.

An abstract representation is developed for this class of problems and show how pose generators can be used to autonomously compute feasible robot motion plans for constructing a given structure. The approach was evaluated through simulation and on a real ABB YuMi robot. Results show that hierarchical algorithms for planning can effectively overcome the computational barriers to solving such problems.

The second part of this thesis proposes a deep learning-based algorithm to identify critical regions for motion planning. Further investigation is done whether these learned critical regions can be translated to learn high-level landmark actions for automated planning.
ContributorsKumar, Kislay (Author) / Srivastava, Siddharth (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2019
158844-Thumbnail Image.png
Description
Many real-world planning problems can be modeled as Markov Decision Processes (MDPs) which provide a framework for handling uncertainty in outcomes of action executions. A solution to such a planning problem is a policy that handles possible contingencies that could arise during execution. MDP solvers typically construct policies for a

Many real-world planning problems can be modeled as Markov Decision Processes (MDPs) which provide a framework for handling uncertainty in outcomes of action executions. A solution to such a planning problem is a policy that handles possible contingencies that could arise during execution. MDP solvers typically construct policies for a problem instance without re-using information from previously solved instances. Research in generalized planning has demonstrated the utility of constructing algorithm-like plans that reuse such information. However, using such techniques in an MDP setting has not been adequately explored.

This thesis presents a novel approach for learning generalized partial policies that can be used to solve problems with different object names and/or object quantities using very few example policies for learning. This approach uses abstraction for state representation, which allows the identification of patterns in solutions such as loops that are agnostic to problem-specific properties. This thesis also presents some theoretical results related to the uniqueness and succinctness of the policies computed using such a representation. The presented algorithm can be used as fast, yet greedy and incomplete method for policy computation while falling back to a complete policy search algorithm when needed. Extensive empirical evaluation on discrete MDP benchmarks shows that this approach generalizes effectively and is often able to solve problems much faster than existing state-of-art discrete MDP solvers. Finally, the practical applicability of this approach is demonstrated by incorporating it in an anytime stochastic task and motion planning framework to successfully construct free-standing tower structures using Keva planks.
ContributorsKala Vasudevan, Deepak (Author) / Srivastava, Siddharth (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020
158851-Thumbnail Image.png
Description
Most planning agents assume complete knowledge of the domain, which may not be the case in scenarios where certain domain knowledge is missing. This problem could be due to design flaws or arise from domain ramifications or qualifications. In such cases, planning algorithms could produce highly undesirable behaviors. Planning with

Most planning agents assume complete knowledge of the domain, which may not be the case in scenarios where certain domain knowledge is missing. This problem could be due to design flaws or arise from domain ramifications or qualifications. In such cases, planning algorithms could produce highly undesirable behaviors. Planning with incomplete domain knowledge is more challenging than partial observability in the sense that the planning agent is unaware of the existence of such knowledge, in contrast to it being just unobservable or partially observable. That is the difference between known unknowns and unknown unknowns.

In this thesis, I introduce and formulate this as the problem of Domain Concretization, which is inverse to domain abstraction studied extensively before. Furthermore, I present a solution that starts from the incomplete domain model provided to the agent by the designer and uses teacher traces from human users to determine the candidate model set under a minimalistic model assumption. A robust plan is then generated for the maximum probability of success under the set of candidate models. In addition to a standard search formulation in the model-space, I propose a sample-based search method and also an online version of it to improve search time. The solution presented has been evaluated on various International Planning Competition domains where incompleteness was introduced by deleting certain predicates from the complete domain model. The solution is also tested in a robot simulation domain to illustrate its effectiveness in handling incomplete domain knowledge. The results show that the plan generated by the algorithm increases the plan success rate without impacting action cost too much.
ContributorsSharma, Akshay (Author) / Zhang, Yu (Thesis advisor) / Fainekos, Georgios (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2020
161301-Thumbnail Image.png
Description
In settings where a human and an embodied AI (artificially intelligent) agent coexist, the AI agent has to be capable of reasoning with the human's preconceived notions about the environment as well as with the human's perception limitations. In addition, it should be capable of communicating intentions and objectives effectively

In settings where a human and an embodied AI (artificially intelligent) agent coexist, the AI agent has to be capable of reasoning with the human's preconceived notions about the environment as well as with the human's perception limitations. In addition, it should be capable of communicating intentions and objectives effectively to the human-in-the-loop. While acting in the presence of human observers, the AI agent can synthesize interpretable behaviors like explicable, legible, and assistive behaviors by accounting for the human's mental model (inclusive of her sensor model) in its reasoning process. This thesis will study different behavior synthesis algorithms which focus on improving the interpretability of the agent's behavior in the presence of a human observer. Further, this thesis will study how environment redesign strategies can be leveraged to improve the overall interpretability of the agent's behavior. At times, the agent's environment may also consist of purely adversarial entities or mixed entities (i.e. adversarial as well as cooperative entities), that are trying to infer information from the AI agent's behavior. In such settings, it is crucial for the agent to exhibit obfuscatory behavior that prevents sensitive information from falling into the hands of the adversarial entities. This thesis will show that it is possible to synthesize interpretable as well as obfuscatory behaviors using a single underlying algorithmic framework.
ContributorsKulkarni, Anagha (Author) / Kambhampati, Subbarao (Thesis advisor) / Kamar, Ece (Committee member) / Smith, David E. (Committee member) / Srivastava, Siddharth (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2021