Matching Items (35)
Filtering by

Clear all filters

148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148341-Thumbnail Image.png
Description

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the behavior of electrons whose combined internal angular momentum is zero. This paper will go over Dr. Bell's famous inequality, which shows why the process of entanglement cannot be explained by traditional means of local processes. Entanglement will be viewed initially through the Copenhagen Interpretation, but this paper will also look at two particular models of quantum mechanics, de-Broglie Bohm theory and Everett's Many-Worlds Interpretation, and observe how they explain the behavior of spin and entangled particles compared to the Copenhagen Interpretation.

ContributorsWood, Keaten Lawrence (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147926-Thumbnail Image.png
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsLobo, Ian (Co-author) / Koleber, Keith (Co-author) / Markabawi, Jah (Co-author) / Masud, Abdullah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
162272-Thumbnail Image.png
Description

The pandemic that hit in 2020 has boosted the growth of online learning that involves the booming of Massive Open Online Course (MOOC). To support this situation, it will be helpful to have tools that can help students in choosing between the different courses and can help instructors to understand

The pandemic that hit in 2020 has boosted the growth of online learning that involves the booming of Massive Open Online Course (MOOC). To support this situation, it will be helpful to have tools that can help students in choosing between the different courses and can help instructors to understand what the students need. One of those tools is an online course ratings predictor. Using the predictor, online course instructors can learn the qualities that majority course takers deem as important, and thus they can adjust their lesson plans to fit those qualities. Meanwhile, students will be able to use it to help them in choosing the course to take by comparing the ratings. This research aims to find the best way to predict the rating of online courses using machine learning (ML). To create the ML model, different combinations of the length of the course, the number of materials it contains, the price of the course, the number of students taking the course, the course’s difficulty level, the usage of jargons or technical terms in the course description, the course’s instructors’ rating, the number of reviews the instructors got, and the number of classes the instructors have created on the same platform are used as the inputs. Meanwhile, the output of the model would be the average rating of a course. Data from 350 courses are used for this model, where 280 of them are used for training, 35 for testing, and the last 35 for validation. After trying out different machine learning models, wide neural networks model constantly gives the best training results while the medium tree model gives the best testing results. However, further research needs to be conducted as none of the results are not accurate, with 0.51 R-squared test result for the tree model.

ContributorsWidodo, Herlina (Author) / VanLehn, Kurt (Thesis director) / Craig, Scotty (Committee member) / Barrett, The Honors College (Contributor) / Department of Management and Entrepreneurship (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12
Description

This research paper explores the effects of data variance on the quality of Artificial Intelligence image generation models and the impact on a viewer's perception of the generated images. The study examines how the quality and accuracy of the images produced by these models are influenced by factors such as

This research paper explores the effects of data variance on the quality of Artificial Intelligence image generation models and the impact on a viewer's perception of the generated images. The study examines how the quality and accuracy of the images produced by these models are influenced by factors such as size, labeling, and format of the training data. The findings suggest that reducing the training dataset size can lead to a decrease in image coherence, indicating that AI models get worse as the training dataset gets smaller. Moreover, the study makes surprising discoveries regarding AI image generation models that are trained on highly varied datasets. In addition, the study involves a survey in which people were asked to rate the subjective realism of the generated images on a scale ranging from 1 to 5 as well as sorting the images into their respective classes. The findings of this study emphasize the importance of considering dataset variance and size as a critical aspect of improving image generation models as well as the implications of using AI technology in the future.

ContributorsPunyamurthula, Rushil (Author) / Carter, Lynn (Thesis director) / Sarmento, Rick (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
166246-Thumbnail Image.png
Description
In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is

In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is “information that either does not have a predefined data model or is not organized in a pre-defined manner” (Balducci & Marinova 2018). Such data are difficult to put into spreadsheets and relational databases due to their lack of numeric values and often come in the form of text fields written by the consumers (Wolff, R. 2020). The goal of this project is to help in the development of a machine learning model to aid CommonSpirit Health and ServiceNow, hence why this approach using unstructured data was selected. This paper provides a general overview of the process of unstructured data management and explores some existing implementations and their efficacy. It will then discuss our approach to converting unstructured cases into usable data that were used to develop an artificial intelligence model which is estimated to be worth $400,000 and save CommonSpirit Health $1,200,000 in organizational impact.
ContributorsBergsagel, Matteo (Author) / De Waard, Jan (Co-author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Burns, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
Narrative generation is an important field due to the high demand for stories in video game design and also in stories used in learning tools in the classroom. As these stories should contain depth, it is desired for these stories to ideally be more descriptive. There are tools that hel

Narrative generation is an important field due to the high demand for stories in video game design and also in stories used in learning tools in the classroom. As these stories should contain depth, it is desired for these stories to ideally be more descriptive. There are tools that help with the creation of these stories, such as planning, which requires a domain as input, or GPT-3, which requires an input prompt to generate the stories. However, other aspects to consider are the coherence and variation of stories. To save time and effort and create multiple possible stories, we combined both planning and the Large Language Model (LLM) GPT-3 similar to how they were used in TattleTale to generate such stories while examining whether descriptive input prompts to GPT-3 affect the outputted stories. The stories generated are readable to the general public and overall, the prompts do not consistently affect descriptiveness of outputs across all stories tested. For this work, three stories with three variants each were created and tested for descriptiveness. To do so, adjectives, adverbs, prepositional phrases, and suboordinating conjunctions were counted using Natural Language Processing (NLP) tool spaCy for Part Of Speech (POS) tagging. This work has shown that descriptiveness is highly correlated with the amount of words in the story in general, so running GPT-3 to obtain longer stories is a feasible option to consider in order to obtain more descriptive stories. The limitations of GPT-3 have an impact on the descriptiveness of resulting stories due to GPT-3’s inconsistency and transformer architecture, and other methods of narrative generation such as simple planning could be more useful.
ContributorsDozier, Courtney (Author) / Chavez-Echeagary, Maria Elena (Thesis director) / Benjamin, Victor (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12
Description
This thesis provides an analysis of the potential issues of using ChatGPT, as despite its benefits it does have its concerns that may deter societal progress. The thesis first provides insight into how ChatGPT generates text and provides insight into how the process of generating its outputs can lead to

This thesis provides an analysis of the potential issues of using ChatGPT, as despite its benefits it does have its concerns that may deter societal progress. The thesis first provides insight into how ChatGPT generates text and provides insight into how the process of generating its outputs can lead to a variety of issues in the output such as hallucinated and biased output. After explaining how these issues occur, the thesis focuses on the impact of these issues in important industries such as medicine, education, and security, comparing them to popular open-source models such as Llama and Falcon.
ContributorsTsai, Brandon (Author) / Martin, Thomas (Thesis director) / Shakarian, Paulo (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05
Description
In the field of botany, it is often necessary for plants to be identified based on their phenotypical characteristics, whether in person or using previously collected image samples. This work can be tedious and challenging for a human botanist to complete, as datasets can be large and several species of

In the field of botany, it is often necessary for plants to be identified based on their phenotypical characteristics, whether in person or using previously collected image samples. This work can be tedious and challenging for a human botanist to complete, as datasets can be large and several species of plants strongly resemble each other. Various machine learning techniques, both supervised and unsupervised, can address this task with varying degrees of accuracy and efficiency thanks to their ability to identify subtle patterns in data. The objective of this research is to both conduct a review of previous studies that measure the effectiveness of various machine learning methods for plant identification and to build and test various models to draw up a comparison of the accuracies and efficiencies of the set of techniques. A review of the existing literature found that any of the studied machine learning techniques can yield a high level of accuracy when used in the correct situations and on a suitable dataset. The results gathered from the models built from this research show that all else being equal, complex convolutional neural networks perform the best on this task, yielding an accuracy of 85.4% on the larger dataset. The other models tested in descending order of accuracy on the same dataset are k-nearest neighbors, random forest, k-means clustering, and a decision tree classifier.
ContributorsOlsen, Laela (Author) / Carter, Lynn Robert (Thesis director) / Bhargav, Vishnu (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05