Matching Items (10)
Filtering by

Clear all filters

133225-Thumbnail Image.png
Description
Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor articulation of plosive and fricative consonants, and can lead to negative communicative and social consequences. It can be associated with

Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor articulation of plosive and fricative consonants, and can lead to negative communicative and social consequences. It can be associated with a range of conditions, including cleft lip or palate, velopharyngeal dysfunction (a physical or neurological defective closure of the soft palate that regulates resonance between the oral and nasal cavity), dysarthria, or hearing impairment, and can also be an early indicator of developing neurological disorders such as ALS. Hypernasality is typically scored perceptually by a Speech Language Pathologist (SLP). Misdiagnosis could lead to inadequate treatment plans and poor treatment outcomes for a patient. Also, for some applications, particularly screening for early neurological disorders, the use of an SLP is not practical. Hence this work demonstrates a data-driven approach to objective assessment of hypernasality, through the use of Goodness of Pronunciation features. These features capture the overall precision of articulation of speaker on a phoneme-by-phoneme basis, allowing demonstrated models to achieve a Pearson correlation coefficient of 0.88 on low-nasality speakers, the population of most interest for this sort of technique. These results are comparable to milestone methods in this domain.
ContributorsSaxon, Michael Stephen (Author) / Berisha, Visar (Thesis director) / McDaniel, Troy (Committee member) / Electrical Engineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135056-Thumbnail Image.png
Description
In this paper, I will show that news headlines of global events can predict changes in stock price by using Machine Learning and eight years of data from r/WorldNews, a popular forum on Reddit.com. My data is confined to the top 25 daily posts on the forum, and due to

In this paper, I will show that news headlines of global events can predict changes in stock price by using Machine Learning and eight years of data from r/WorldNews, a popular forum on Reddit.com. My data is confined to the top 25 daily posts on the forum, and due to the implicit filtering mechanism in the online community, these 25 posts are representative of the most popular news headlines and influential global events of the day. Hence, these posts shine a light on how large-scale social and political events affect the stock market. Using a Logistic Regression and a Naive Bayes classifier, I am able to predict with approximately 85% accuracy a binary change in stock price using term-feature vectors gathered from the news headlines. The accuracy, precision and recall results closely rival the best models in this field of research. In addition to the results, I will also describe the mathematical underpinnings of the two models; preceded by a general investigation of the intersection between the multiple academic disciplines related to this project. These range from social to computer science and from statistics to philosophy. The goal of this additional discussion is to further illustrate the interdisciplinary nature of the research and hopefully inspire a non-monolithic mindset when further investigations are pursued.
Created2016-12
166246-Thumbnail Image.png
Description
In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is

In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is “information that either does not have a predefined data model or is not organized in a pre-defined manner” (Balducci & Marinova 2018). Such data are difficult to put into spreadsheets and relational databases due to their lack of numeric values and often come in the form of text fields written by the consumers (Wolff, R. 2020). The goal of this project is to help in the development of a machine learning model to aid CommonSpirit Health and ServiceNow, hence why this approach using unstructured data was selected. This paper provides a general overview of the process of unstructured data management and explores some existing implementations and their efficacy. It will then discuss our approach to converting unstructured cases into usable data that were used to develop an artificial intelligence model which is estimated to be worth $400,000 and save CommonSpirit Health $1,200,000 in organizational impact.
ContributorsBergsagel, Matteo (Author) / De Waard, Jan (Co-author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Burns, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

This thesis explores the ethical implications of using facial recognition artificial intelligence (AI) technologies in medicine, with a focus on both the opportunities and challenges presented by the use of this technology in the diagnosis and treatment of rare genetic disorders. We highlight the positive outcomes of using AI in

This thesis explores the ethical implications of using facial recognition artificial intelligence (AI) technologies in medicine, with a focus on both the opportunities and challenges presented by the use of this technology in the diagnosis and treatment of rare genetic disorders. We highlight the positive outcomes of using AI in medicine, such as accuracy and efficiency in diagnosing rare genetic disorders, while also examining the ethical concerns including bias, misdiagnosis, the issues it may cause within patient-clinician relationships, misuses outside of medicine, and privacy. This paper draws on the opinions of medical providers and other professionals outside of medicine, which finds that while many are excited about the potential of AI to improve medicine, concerns remain about the ethical implications of these technologies. We discuss current legislation controlling the use of AI in healthcare and its ambiguity. Overall, this thesis highlights the need for further research and public discourse to address the ethical implications of using facial recognition and AI technologies in medicine, while also providing recommendations for its future use in medicine.

ContributorsVargas Jordan, Anna (Author) / Kohlenberg, Maiya (Co-author) / Martin, Thomas (Thesis director) / Sellner, Erin (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2023-05
164478-Thumbnail Image.png
Description
Artificial intelligence (AI) and machine learning (ML) is rapidly evolving with enormous impact on a wide range of individual and societal matters including in health care, now and in the future. The goal of this research project is to assess the current knowledge level of AI and ML in health

Artificial intelligence (AI) and machine learning (ML) is rapidly evolving with enormous impact on a wide range of individual and societal matters including in health care, now and in the future. The goal of this research project is to assess the current knowledge level of AI and ML in health care among healthcare professionals and the lay public. Results from this research will identify knowledge gaps and educational opportunities to improve future use and applications of AI and ML in health care.
ContributorsShen, Maria (Author) / Martin, Thomas (Thesis director) / Wheatley-Guy, Courtney (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
131987-Thumbnail Image.png
Description
Background: Natural Language Processing models have been trained to locate questions and answers in forum settings before but on topics such as cancer and diabetes. Also, studies have used filtering methods to understand themes in forum settings regarding opioid use. However, studies have not been conducted regarding training an NLP

Background: Natural Language Processing models have been trained to locate questions and answers in forum settings before but on topics such as cancer and diabetes. Also, studies have used filtering methods to understand themes in forum settings regarding opioid use. However, studies have not been conducted regarding training an NLP model to locate the questions people addicted to opioids are asking their peers and the answers they are receiving in forums. There are a variety of annotation tools available to help aid the data collection to train NLP models. For academic purposes, brat is the best tool for this purpose. This study will inform clinical practice by indicating what the inner thoughts of their patients who are addicted to opioids are so that they will be able to have more meaningful conversations during appointments that the patient may be too afraid to start.

Methods: The standard NLP process was used for this study in which a gold standard was reached through matched paired annotations of the forum text in brat and a neural network was trained on the content. Following the annotation process, adjudication occurred to increase the inter-annotator agreement. Categories were developed by local physicians to describe the questions and three pilots were run to test the best way to categorize the questions.

Results: The inter-annotator agreement, calculated via F-score, before adjudication for a 0.7 threshold was 0.378 for the annotation activity. After adjudication at a threshold of 0.7, the inter-annotator agreement increased to 0.560. Pilots 1, 2, and 3 of the categorization activity had an inter-annotator agreement of 0.375, 0.5, and 0.966 respectively.

Discussion: The inter-annotator agreement of the annotation activity may have been low initially since the annotators were students who may have not been as invested in the project as necessary to accurately annotate the text. Also, as everyone interprets the text slightly differently, it is possible that that contributed to the differences in the matched pairs’ annotations. The F-score variation for the categorization activity partially had to do with different delivery systems of the instructions and partially with the area of study of the participants. The first pilot did not mandate the use of the original context located in brat and the instructions were provided in the form of a downloadable document. The participants were computer science graduate students. The second pilot also had the instructions delivered via a document, but it was strongly suggested that the context be used to gain an understanding of the questions’ meanings. The participants were also computer science graduate students who upon a discussion of their results after the pilot expressed that they did not have a good understanding of the medical jargon in the posts. The final pilot used a combination of students with and without medical background, required to use the context, and included verbal instructions in combination with the written ones. The combination of these factors increased the F-score significantly. For a full-scale experiment, students with a medical background should be used to categorize the questions.
ContributorsPawlik, Katie (Author) / Devarakonda, Murthy (Thesis director) / Murcko, Anita (Committee member) / Green, Ellen (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131662-Thumbnail Image.png
Description
The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å,

The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å, and [S II] 6720 Å to compare with Hubble Space Telescope observations of the HH 901 jets presented in Reiter et al. (2016). We derived the emissivities for these lines from the spectral synthesis code Cloudy by Ferland et al. (2017). In addition, we used WENO simulations of density, temperature, and radiative cooling to model the jet. We found that the computed surface brightness values agreed with most of the observational surface brightness values. Thus, the 3D cylindrically symmetric simulations of surface brightness using the WENO code and Cloudy spectral emission models are accurate for jets like HH 901. After detailing these agreements, we discuss the next steps for the project, like adding an external ambient wind and performing the simulations in full 3D.
ContributorsMohan, Arun (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132796-Thumbnail Image.png
Description
This thesis surveys and analyzes applications of machine learning techniques to the fields of animation and computer graphics. Data-driven techniques utilizing machine learning have in recent years been successfully applied to many subfields of animation and computer graphics. These include, but are not limited to, fluid dynamics, kinematics, and character

This thesis surveys and analyzes applications of machine learning techniques to the fields of animation and computer graphics. Data-driven techniques utilizing machine learning have in recent years been successfully applied to many subfields of animation and computer graphics. These include, but are not limited to, fluid dynamics, kinematics, and character modeling. I argue that such applications offer significant advantages which will be pivotal in advancing the fields of animation and computer graphics. Further, I argue these advantages are especially relevant in real-time implementations when working with finite computational resources.
ContributorsSaba, Raphael Lucas (Author) / Foy, Joseph (Thesis director) / Olson, Loren (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165084-Thumbnail Image.png
Description
This project aspires to develop an AI capable of playing on a variety of maps in a Risk-like board game. While AI has been successfully applied to many other board games, such as Chess and Go, most research is confined to a single board and is inflexible to topological changes.

This project aspires to develop an AI capable of playing on a variety of maps in a Risk-like board game. While AI has been successfully applied to many other board games, such as Chess and Go, most research is confined to a single board and is inflexible to topological changes. Further, almost all of these games are played on a rectangular grid. Contrarily, this project develops an AI player, referred to as GG-net, to play the online strategy game Warzone, which is based on the classic board game Risk. Warzone is played on a wide variety of irregularly shaped maps. Prior research has struggled to create an effective AI for Risk-like games due to the immense branching factor. The most successful attempts tended to rely on manually restricting the set of actions the AI considered while also engineering useful features for the AI to consider. GG-net uses no human knowledge, but rather a genetic algorithm combined with a graph neural network. Together, these methods allow GG-net to perform competitively across a multitude of maps. GG-net outperformed the built-in rule-based AI by 413 Elo (representing an 80.7% chance of winning) and an approach based on AlphaZero using graph neural networks by 304 Elo (representing a 74.2% chance of winning). This same advantage holds across both seen and unseen maps. GG-net appears to be a strong opponent on both small and medium maps, however, on large maps with hundreds of territories, inefficiencies in GG-net become more significant and GG-net struggles against the rule-based approach. Overall, GG-net was able to successfully learn the game and generalize across maps of a similar size, albeit further work is required for GG-net to become more successful on large maps.
ContributorsBauer, Andrew (Author) / Yang, Yezhou (Thesis director) / Harrison, Blake (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description

For my Honors Thesis, I decided to create an Artificial Intelligence Project to predict Fantasy NFL Football Points of players and team's defense. I created a Tensorflow Keras AI Regression model and created a Flask API that holds the AI model, and a Django Try-It Page for the user to

For my Honors Thesis, I decided to create an Artificial Intelligence Project to predict Fantasy NFL Football Points of players and team's defense. I created a Tensorflow Keras AI Regression model and created a Flask API that holds the AI model, and a Django Try-It Page for the user to use the model. These services are hosted on ASU's AWS service. In my Flask API, it actively gathers data from Pro-Football-Reference, then calculates the fantasy points. Let’s say the current year is 2022, then the model analyzes each player and trains on all data from available from 2000 to 2020 data, tests the data on 2021 data, and predicts for 2022 year. The Django Website asks the user to input the current year, then the user clicks the submit button runs the AI model, and the process explained earlier. Next, the user enters the player's name for the point prediction and the website predicts the last 5 rows with 4 being the previous fantasy points and the 5th row being the prediction.

ContributorsPanikulam, Caleb (Author) / De Luca, Gennaro (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12