Matching Items (48)
Filtering by

Clear all filters

131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133901-Thumbnail Image.png
Description
This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally

This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally accepted model of an artificial neuron is broken down into its key components and then analyzed for functionality by relating back to its biological counterpart. The role of a neuron is then described in the context of a neural network, with equal emphasis placed on how it individually undergoes training and then for an entire network. Using the technique of supervised learning, the neural network is trained with three main factors for housing price classification, including its total number of rooms, bathrooms, and square footage. Once trained with most of the generated data set, it is tested for accuracy by introducing the remainder of the data-set and observing how closely its computed output for each set of inputs compares to the target value. From a programming perspective, the artificial neuron is implemented in C so that it would be more closely tied to the operating system and therefore make the collected profiler data more precise during the program's execution. The program is designed to break down each stage of the neuron's training process into distinct functions. In addition to utilizing more functional code, the struct data type is used as the underlying data structure for this project to not only represent the neuron but for implementing the neuron's training and test data. Once fully trained, the neuron's test results are then graphed to visually depict how well the neuron learned from its sample training set. Finally, the profiler data is analyzed to describe how the program operated from a data management perspective on the software and hardware level.
ContributorsRichards, Nicholas Giovanni (Author) / Miller, Phillip (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136604-Thumbnail Image.png
Description
As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has

As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has designed and developed a prototype smartphone application targeting palliative care patients. The application collects symptom data from the patients and presents it to the doctors. This development project serves as a proof-of-concept for the application, and shows how such an application might look and function. Additionally, the project has revealed significant possibilities for the future of the application.
ContributorsGaney, David Howard (Author) / Balasooriya, Janaka (Thesis director) / Lipinski, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136678-Thumbnail Image.png
Description
When planning a road trip today, there are solutions that let the user know what comes along their route, but the user is often presented with too much information, which can overwhelm the user. They are provided suggestions all along the route, not just at those times when they would

When planning a road trip today, there are solutions that let the user know what comes along their route, but the user is often presented with too much information, which can overwhelm the user. They are provided suggestions all along the route, not just at those times when they would be needed. RoutePlanner simply takes all that information and only presents that data to the user, that they would need at a particular time. Gas station suggestions would show when the gas tank range is going to be hit soon, and restaurant suggestions would only be shown around lunch time. The iOS app takes in the users origin and destination and provides the user the route as given by GoogleMaps, and then various stop suggestions at their given time. Each route that is obtained, is broken down into a number of steps, which are basically a connection of coordinate points. These coordinate point collections are used to point to a location at a certain distance or duration away from the origin. Given a coordinate, we query the APIs for places of interest and move to the next stop, until the end of the route.
ContributorsDamania, Harsh Abhay (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136440-Thumbnail Image.png
Description
The face of computing is constantly changing. Wearable computers in the form of glasses or watches are becoming more and more common. These devices have very small screens (measured in millimeters), and users often interact with them through voice input and audio feedback. Weather is one of the most regularly

The face of computing is constantly changing. Wearable computers in the form of glasses or watches are becoming more and more common. These devices have very small screens (measured in millimeters), and users often interact with them through voice input and audio feedback. Weather is one of the most regularly checked app category on smart devices, but weather results on these devices are often limited to raw data, canned responses, or sentence templates with numbers plugged in. The goal for this project was to build a system that could generate weather forecast text, which could then be read to a user through text-to-speech. By using methods in language generation, the system can generate weather forecast text in millions of different ways. This is all computed locally, and it covers every possible weather case. In order to generate natural weather forecast texts, the system retrieved raw weather data from a weather API and created the text through six methods: content determination, document structuring, sentence aggregation, lexical choice, referring expression generation, and text realization. Content determination is the process of deciding on what information to include in a computer generated text. The document structuring phase deals with the order and structure of the information. Sentence aggregation is the merging of similar sentences to improve readability and to reduce redundancy. Lexical choice is the process of putting words to concepts. Referring expression generation is the process of identifying objects, regions, time periods, and locations within a text. Finally text realization involves creating sentences with proper syntax, morphology, and orthography. Through these six stages, a system was developed that could generate unique weather forecast text from raw data accurately and efficiently. It was built for iOS devices with Apple's new programming language, Swift, and it will be ported to the Apple Watch when the API is fully opened to developers.
ContributorsJorgensen, Jacob Paul (Author) / Baral, Chitta (Thesis director) / Faucon, Christophe (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136202-Thumbnail Image.png
Description
The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques

The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques to align natural language sentences to the linearized parses of their associated knowledge representations in order to learn the meanings of individual words. The work includes proposing and analyzing an approach that can be used to learn some of the initial lexicon.
ContributorsBaldwin, Amy Lynn (Author) / Baral, Chitta (Thesis director) / Vo, Nguyen (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
135242-Thumbnail Image.png
Description
Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply

Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply obtaining such exploits – so an alternative approach is needed to understand what exploits an attacker will most likely purchase and how to defend against them. In this paper, we introduce a data-driven security game framework to model an attacker and provide policy recommendations to the defender. In addition to providing a formal framework and algorithms to develop strategies, we present experimental results from applying our framework, for various system configurations, on real-world exploit market data actively mined from the darknet.
ContributorsRobertson, John James (Author) / Shakarian, Paulo (Thesis director) / Doupe, Adam (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132922-Thumbnail Image.png
Description
Charleston, South Carolina currently faces serious annual flooding issues due to tides and rainfall. These issues are expected to get significantly worse within the next few decades reaching a projected 180 days a year of flooding by 2045 (Carter et al., 2018). Several permanent solutions are in progress by the

Charleston, South Carolina currently faces serious annual flooding issues due to tides and rainfall. These issues are expected to get significantly worse within the next few decades reaching a projected 180 days a year of flooding by 2045 (Carter et al., 2018). Several permanent solutions are in progress by the City of Charleston. However, these solutions are years away at minimum and faced with development issues. This thesis attempts to treat some of the symptoms of flooding, such as navigation, by creating an iPhone application which predicts flooding and helps people navigate around it safely. Specifically, this thesis will take into account rainfall and tide levels to display to users actively flooded areas of downtown Charleston and provide routing to a destination from a user’s location around these flooded areas whenever possible.
ContributorsSalisbury, Mason (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132967-Thumbnail Image.png
Description
Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that,

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.
ContributorsNakhleh, Julia Blair (Author) / Srivastava, Siddharth (Thesis director) / Fainekos, Georgios (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133339-Thumbnail Image.png
Description
Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important aspect within these records is the presence of prescription information. Existing techniques for extracting prescription information — which includes medication names, dosages, frequencies, reasons for taking, and mode of administration — from unstructured text have focused on the application of rule- and classifier-based methods. While state-of-the-art systems can be effective in extracting many types of information, they require significant effort to develop hand-crafted rules and conduct effective feature engineering. This paper presents the use of a bidirectional LSTM with CRF tagging model initialized with precomputed word embeddings for extracting prescription information from sentences without requiring significant feature engineering. The experimental results, run on the i2b2 2009 dataset, achieve an F1 macro measure of 0.8562, and scores above 0.9449 on four of the six categories, indicating significant potential for this model.
ContributorsRawal, Samarth Chetan (Author) / Baral, Chitta (Thesis director) / Anwar, Saadat (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05