Matching Items (14)
Filtering by

Clear all filters

135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136857-Thumbnail Image.png
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136083-Thumbnail Image.png
Description
Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age

Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age groups, especially the young, and senior sparing effects. The low value for reproduction number indicates that transmissibility was moderately low.
ContributorsJenner, Melinda Eva (Author) / Chowell-Puente, Gerardo (Thesis director) / Kostelich, Eric (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does not change over time relative to other queens. Further, a

Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does not change over time relative to other queens. Further, a queen has an individual reproductive advantage if she has a small reproductive ratio. A colony, however, has a reproductive advantage if it has queens with large ratios, as these queens produce many female workers to further colony success. We have developed an agent-based model to analyze the "cheating" phenotype observed in field research, in which queens extend their lifespans by producing disproportionately many male offspring. The model generates phenotypes and simulates years of reproductive cycles. The results allow us to examine the surviving phenotypes and determine conditions under which a cheating phenotype has an evolutionary advantage. Conditions generating a bimodal steady state solution would indicate a cheating phenotype's ability to invade a cooperative population.
ContributorsEngel, Lauren Marie Agnes (Author) / Armbruster, Dieter (Thesis director) / Fewell, Jennifer (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133225-Thumbnail Image.png
Description
Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor articulation of plosive and fricative consonants, and can lead to negative communicative and social consequences. It can be associated with

Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor articulation of plosive and fricative consonants, and can lead to negative communicative and social consequences. It can be associated with a range of conditions, including cleft lip or palate, velopharyngeal dysfunction (a physical or neurological defective closure of the soft palate that regulates resonance between the oral and nasal cavity), dysarthria, or hearing impairment, and can also be an early indicator of developing neurological disorders such as ALS. Hypernasality is typically scored perceptually by a Speech Language Pathologist (SLP). Misdiagnosis could lead to inadequate treatment plans and poor treatment outcomes for a patient. Also, for some applications, particularly screening for early neurological disorders, the use of an SLP is not practical. Hence this work demonstrates a data-driven approach to objective assessment of hypernasality, through the use of Goodness of Pronunciation features. These features capture the overall precision of articulation of speaker on a phoneme-by-phoneme basis, allowing demonstrated models to achieve a Pearson correlation coefficient of 0.88 on low-nasality speakers, the population of most interest for this sort of technique. These results are comparable to milestone methods in this domain.
ContributorsSaxon, Michael Stephen (Author) / Berisha, Visar (Thesis director) / McDaniel, Troy (Committee member) / Electrical Engineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135056-Thumbnail Image.png
Description
In this paper, I will show that news headlines of global events can predict changes in stock price by using Machine Learning and eight years of data from r/WorldNews, a popular forum on Reddit.com. My data is confined to the top 25 daily posts on the forum, and due to

In this paper, I will show that news headlines of global events can predict changes in stock price by using Machine Learning and eight years of data from r/WorldNews, a popular forum on Reddit.com. My data is confined to the top 25 daily posts on the forum, and due to the implicit filtering mechanism in the online community, these 25 posts are representative of the most popular news headlines and influential global events of the day. Hence, these posts shine a light on how large-scale social and political events affect the stock market. Using a Logistic Regression and a Naive Bayes classifier, I am able to predict with approximately 85% accuracy a binary change in stock price using term-feature vectors gathered from the news headlines. The accuracy, precision and recall results closely rival the best models in this field of research. In addition to the results, I will also describe the mathematical underpinnings of the two models; preceded by a general investigation of the intersection between the multiple academic disciplines related to this project. These range from social to computer science and from statistics to philosophy. The goal of this additional discussion is to further illustrate the interdisciplinary nature of the research and hopefully inspire a non-monolithic mindset when further investigations are pursued.
Created2016-12
166246-Thumbnail Image.png
Description
In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is

In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is “information that either does not have a predefined data model or is not organized in a pre-defined manner” (Balducci & Marinova 2018). Such data are difficult to put into spreadsheets and relational databases due to their lack of numeric values and often come in the form of text fields written by the consumers (Wolff, R. 2020). The goal of this project is to help in the development of a machine learning model to aid CommonSpirit Health and ServiceNow, hence why this approach using unstructured data was selected. This paper provides a general overview of the process of unstructured data management and explores some existing implementations and their efficacy. It will then discuss our approach to converting unstructured cases into usable data that were used to develop an artificial intelligence model which is estimated to be worth $400,000 and save CommonSpirit Health $1,200,000 in organizational impact.
ContributorsBergsagel, Matteo (Author) / De Waard, Jan (Co-author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Burns, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

In this project we focus on COVID-19 in a university setting. Arizona State University has a very large population on the Tempe Campus. With the emergence of diseases such as COVID-19, it is very important to track how such a disease spreads within that type of community. This is vital

In this project we focus on COVID-19 in a university setting. Arizona State University has a very large population on the Tempe Campus. With the emergence of diseases such as COVID-19, it is very important to track how such a disease spreads within that type of community. This is vital for containment measures and the safety of everyone involved. We found in the literature several epidemiology models that utilize differential equations for tracking a spread of a disease. However, our goal is to provide a granular look at how disease may spread through contact in a classroom. This thesis models a single ASU classroom and tracks the spread of a disease. It is important to note that our variables and declarations are not aligned with COVID-19 or any other specific disease but are chosen to exemplify the impact of some key parameters on the epidemic size. We found that a smaller transmissibility alongside a more spread-out classroom of agents resulted in fewer infections overall. There are many extensions to this model that are needed in order to take what we have demonstrated and align those ideas with COVID-19 and it’s spread at ASU. However, this model successfully demonstrates a spread of disease through single-classroom interaction, which is the key component for any university campus disease transmission model.

ContributorsJoseph, Mariam (Author) / Bartko, Ezri (Co-author) / Sabuwala, Sana (Co-author) / Milner, Fabio (Thesis director) / O'Keefe, Kelly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Division of Teacher Preparation (Contributor)
Created2022-12
131662-Thumbnail Image.png
Description
The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å,

The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å, and [S II] 6720 Å to compare with Hubble Space Telescope observations of the HH 901 jets presented in Reiter et al. (2016). We derived the emissivities for these lines from the spectral synthesis code Cloudy by Ferland et al. (2017). In addition, we used WENO simulations of density, temperature, and radiative cooling to model the jet. We found that the computed surface brightness values agreed with most of the observational surface brightness values. Thus, the 3D cylindrically symmetric simulations of surface brightness using the WENO code and Cloudy spectral emission models are accurate for jets like HH 901. After detailing these agreements, we discuss the next steps for the project, like adding an external ambient wind and performing the simulations in full 3D.
ContributorsMohan, Arun (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132796-Thumbnail Image.png
Description
This thesis surveys and analyzes applications of machine learning techniques to the fields of animation and computer graphics. Data-driven techniques utilizing machine learning have in recent years been successfully applied to many subfields of animation and computer graphics. These include, but are not limited to, fluid dynamics, kinematics, and character

This thesis surveys and analyzes applications of machine learning techniques to the fields of animation and computer graphics. Data-driven techniques utilizing machine learning have in recent years been successfully applied to many subfields of animation and computer graphics. These include, but are not limited to, fluid dynamics, kinematics, and character modeling. I argue that such applications offer significant advantages which will be pivotal in advancing the fields of animation and computer graphics. Further, I argue these advantages are especially relevant in real-time implementations when working with finite computational resources.
ContributorsSaba, Raphael Lucas (Author) / Foy, Joseph (Thesis director) / Olson, Loren (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05