Matching Items (4)

Filtering by

Clear all filters

155468-Thumbnail Image.png

Optimizing Performance Measures in Classification Using Ensemble Learning Methods

Description

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various domains and applications owing to the improvements in computational efficiency

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various domains and applications owing to the improvements in computational efficiency and distributed computing advances. However, with the advent of wide variety of applications of machine learning techniques to class imbalance problems, further focus is needed to evaluate, improve and optimize other performance measures such as sensitivity (true positive rate) and specificity (true negative rate) in classification. This thesis demonstrates a novel approach to evaluate and optimize the performance measures (specifically sensitivity and specificity) using ensemble learning methods for classification that can be especially useful in class imbalanced datasets. In this thesis, ensemble learning methods (specifically bagging and boosting) are used to optimize the performance measures (sensitivity and specificity) on a UC Irvine (UCI) 130 hospital diabetes dataset to predict if a patient will be readmitted to the hospital based on various feature vectors. From the experiments conducted, it can be empirically concluded that, by using ensemble learning methods, although accuracy does improve to some margin, both sensitivity and specificity are optimized significantly and consistently over different cross validation approaches. The implementation and evaluation has been done on a subset of the large UCI 130 hospital diabetes dataset. The performance measures of ensemble learners are compared to the base machine learning classification algorithms such as Naive Bayes, Logistic Regression, k Nearest Neighbor, Decision Trees and Support Vector Machines.

Contributors

Agent

Created

Date Created
2017

156331-Thumbnail Image.png

Graph Search as a Feature in Imperative/Procedural Programming Languages

Description

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.

Contributors

Agent

Created

Date Created
2018

157482-Thumbnail Image.png

A Neural Network Model for a Tutoring Companion Supporting Students in a Programming with Java Course

Description

Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a

Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students.

This work contributes to the construction of a tutoring companion designed to provide this feedback to students. It aims to bridge the gap between the messages the compiler delivers, and the support required for a novice student to understand the problem and fix their code. Particularly, it provides support for students learning about recursion in a beginning university Java programming course. Besides also providing affective support, a tutoring companion could be more effective when it is embedded into the environment that the student is already using, instead of an additional tool for the student to learn. The proposed Tutoring Companion is embedded into the Eclipse Integrated Development Environment (IDE).

This thesis focuses on the reasoning model for the Tutoring Companion and is developed using the techniques of a neural network. While a student uses the IDE, the Tutoring Companion collects 16 data points, including the presence of certain key words, cyclomatic complexity, and error messages from the compiler, every time it detects an event, such as a run attempt, debug attempt, or a request for help, in the IDE. This data is used as inputs to the neural network. The neural network produces a correlating single output code for the feedback to be provided to the student, which is displayed in the IDE.

The effectiveness of the approach is examined among 38 Computer Science students who solve a programming assignment while the Tutoring Companion assists them. Data is collected from these interactions, including all inputs and outputs for the neural network, and students are surveyed regarding their experience. Results suggest that students feel supported while working with the Companion and promising potential for using a neural network with an embedded companion in the future. Challenges in developing an embedded companion are discussed, as well as opportunities for future work.

Contributors

Agent

Created

Date Created
2019

161629-Thumbnail Image.png

Predicting Student Dropout in Self-Paced MOOC Course

Description

One persisting problem in Massive Open Online Courses (MOOCs) is the issue of student dropout from these courses. The prediction of student dropout from MOOC courses can identify the factors responsible for such an event and it can further initiate

One persisting problem in Massive Open Online Courses (MOOCs) is the issue of student dropout from these courses. The prediction of student dropout from MOOC courses can identify the factors responsible for such an event and it can further initiate intervention before such an event to increase student success in MOOC. There are different approaches and various features available for the prediction of student’s dropout in MOOC courses.In this research, the data derived from the self-paced math course ‘College Algebra and Problem Solving’ offered on the MOOC platform Open edX offered by Arizona State University (ASU) from 2016 to 2020 was considered. This research aims to predict the dropout of students from a MOOC course given a set of features engineered from the learning of students in a day. Machine Learning (ML) model used is Random Forest (RF) and this model is evaluated using the validation metrics like accuracy, precision, recall, F1-score, Area Under the Curve (AUC), Receiver Operating Characteristic (ROC) curve. The average rate of student learning progress was found to have more impact than other features. The model developed can predict the dropout or continuation of students on any given day in the MOOC course with an accuracy of 87.5%, AUC of 94.5%, precision of 88%, recall of 87.5%, and F1-score of 87.5% respectively. The contributing features and interactions were explained using Shapely values for the prediction of the model. The features engineered in this research are predictive of student dropout and could be used for similar courses to predict student dropout from the course. This model can also help in making interventions at a critical time to help students succeed in this MOOC course.

Contributors

Agent

Created

Date Created
2021