Matching Items (51)
Filtering by

Clear all filters

152901-Thumbnail Image.png
Description
This thesis focuses on sequencing questions in a way that provides students with manageable steps to understand some of the fundamental concepts in discrete mathematics. The questions are aimed at younger students (middle and high school aged) with the goal of helping young students, who have likely never seen discrete

This thesis focuses on sequencing questions in a way that provides students with manageable steps to understand some of the fundamental concepts in discrete mathematics. The questions are aimed at younger students (middle and high school aged) with the goal of helping young students, who have likely never seen discrete mathematics, to learn through guided discovery. Chapter 2 is the bulk of this thesis as it provides questions, hints, solutions, as well as a brief discussion of each question. In the discussions following the questions, I have attempted to illustrate some relationships between the current question and previous questions, explain the learning goals of that question, as well as point out possible flaws in students' thinking or point out ways to explore this topic further. Chapter 3 provides additional questions with hints and solutions, but no discussion. Many of the questions in Chapter 3 contain ideas similar to questions in Chapter 2, but also illustrate how versatile discrete mathematics topics are. Chapter 4 focuses on possible future directions. The overall framework for the questions is that a student is hosting a birthday party, and all of the questions are ones that might actually come up in party planning. The purpose of putting it in this setting is to make the questions seem more coherent and less arbitrary or forced.
ContributorsBell, Stephanie (Author) / Fishel, Susana (Thesis advisor) / Hurlbert, Glenn (Committee member) / Quigg, John (Committee member) / Arizona State University (Publisher)
Created2014
152531-Thumbnail Image.png
Description
Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations.

Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations. The map which encapsulates the population development from one year to the next is approximated at the origin (the extinction state) by a linear or homogeneous map. The (cone) spectral radius of this approximating map is the threshold between extinction and persistence. General persistence results are applied to three particular models: a size-structured plant population model, a diffusion model (with both Neumann and Dirichlet boundary conditions) for a dispersing population of males and females that only mate and reproduce once during a very short season, and a rank-structured model for a population of males and females.
ContributorsJin, Wen (Author) / Thieme, Horst (Thesis advisor) / Milner, Fabio (Committee member) / Quigg, John (Committee member) / Smith, Hal (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2014
149906-Thumbnail Image.png
Description
In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of

In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with the similarly-named conditions for topological k-graphs and for the associated product systems over N^k of C*-correspondences. Finally I consider the constructions arising from topological dynamical systems consisting of a locally compact Hausdorff space and k commuting local homeomorphisms. I show that in this case, the associated topological k-graph correspondence is isomorphic to the product system over N^k of C*-correspondences arising from a related Exel-Larsen system. Moreover, I show that the topological k-graph C*-algebra has a crossed product structure in the sense of Larsen.
ContributorsPatani, Nura (Author) / Kaliszewski, Steven (Thesis advisor) / Quigg, John (Thesis advisor) / Bremner, Andrew (Committee member) / Kawski, Matthias (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2011
150182-Thumbnail Image.png
Description
The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space. This thesis extends the theory by including some aspects of the symplectic topology of the quantum phase space. It is shown that the quantum mechanical

The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space. This thesis extends the theory by including some aspects of the symplectic topology of the quantum phase space. It is shown that the quantum mechanical uncertainty principle is a special case of an inequality from J-holomorphic map theory, that is, J-holomorphic curves minimize the difference between the quantum covariance matrix determinant and a symplectic area. An immediate consequence is that a minimal determinant is a topological invariant, within a fixed homology class of the curve. Various choices of quantum operators are studied with reference to the implications of the J-holomorphic condition. The mean curvature vector field and Maslov class are calculated for a lagrangian torus of an integrable quantum system. The mean curvature one-form is simply related to the canonical connection which determines the geometric phases and polarization linear response. Adiabatic deformations of a quantum system are analyzed in terms of vector bundle classifying maps and related to the mean curvature flow of quantum states. The dielectric response function for a periodic solid is calculated to be the curvature of a connection on a vector bundle.
ContributorsSanborn, Barbara (Author) / Suslov, Sergei K (Thesis advisor) / Suslov, Sergei (Committee member) / Spielberg, John (Committee member) / Quigg, John (Committee member) / Menéndez, Jose (Committee member) / Jones, Donald (Committee member) / Arizona State University (Publisher)
Created2011
157261-Thumbnail Image.png
Description
Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth

Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.

The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.

The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves.
ContributorsNguyen, Xuan Tho (Author) / Bremner, Andrew (Thesis advisor) / Childress, Nancy (Committee member) / Jones, John (Committee member) / Quigg, John (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2019
135327-Thumbnail Image.png
Description
A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog scheme leads to computational modes in the solutions to highly nonlinear systems, and time-filters are often used to damp these modes. The proposed filter damps the computational modes without appreciably degrading the physical mode. Its performance in these metrics is superior to the second-order time-filtered leapfrog scheme developed by Robert and Asselin.
Created2016-05
135651-Thumbnail Image.png
Description
Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are various complex factors that can contribute to a colony's failure,

Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are various complex factors that can contribute to a colony's failure, including pesticides. Neonicotoids are a popular pesticide that have been used in recent times. In this study we concern ourselves with pesticides and its impact on honey bee colonies. Previous investigations that we draw significant inspiration from include Khoury et Al's \emph{A Quantitative Model of Honey Bee Colony Population Dynamics}, Henry et Al's \emph{A Common Pesticide Decreases Foraging Success and Survival in Honey Bees}, and Brown's \emph{ Mathematical Models of Honey Bee Populations: Rapid Population Decline}. In this project we extend a mathematical model to investigate the impact of pesticides on a honey bee colony, with birth rates and death rates being dependent on pesticides, and we see how these death rates influence the growth of a colony. Our studies have found an equilibrium point that depends on pesticides. Trace amounts of pesticide are detrimental as they not only affect death rates, but birth rates as well.
ContributorsSalinas, Armando (Author) / Vaz, Paul (Thesis director) / Jones, Donald (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136625-Thumbnail Image.png
Description
A Guide to Financial Mathematics is a comprehensive and easy-to-use study guide for students studying for the one of the first actuarial exams, Exam FM. While there are many resources available to students to study for these exams, this study is free to the students and offers an approach to

A Guide to Financial Mathematics is a comprehensive and easy-to-use study guide for students studying for the one of the first actuarial exams, Exam FM. While there are many resources available to students to study for these exams, this study is free to the students and offers an approach to the material similar to that of which is presented in class at ASU. The guide is available to students and professors in the new Actuarial Science degree program offered by ASU. There are twelve chapters, including financial calculator tips, detailed notes, examples, and practice exercises. Included at the end of the guide is a list of referenced material.
ContributorsDougher, Caroline Marie (Author) / Milovanovic, Jelena (Thesis director) / Boggess, May (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136691-Thumbnail Image.png
Description
Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has

Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has size close to or equal to the minimum possible. The construction of such permutation coverings has proven to be computationally difficult. While many examples for permutations of small length have been found, and strong asymptotic behavior is known, there are few explicit constructions for permutations of intermediate lengths. Most of these are generated from scratch using greedy algorithms. We explore a different approach here. Starting with a set of permutations with the desired coverage properties, we compute local changes to individual permutations that retain the total coverage of the set. By choosing these local changes so as to make one permutation less "essential" in maintaining the coverage of the set, our method attempts to make a permutation completely non-essential, so it can be removed without sacrificing total coverage. We develop a post-optimization method to do this and present results on sequence covering arrays and other types of permutation covering problems demonstrating that it is surprisingly effective.
ContributorsMurray, Patrick Charles (Author) / Colbourn, Charles (Thesis director) / Czygrinow, Andrzej (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2014-12
136520-Thumbnail Image.png
Description
Deconvolution of noisy data is an ill-posed problem, and requires some form of regularization to stabilize its solution. Tikhonov regularization is the most common method used, but it depends on the choice of a regularization parameter λ which must generally be estimated using one of several common methods. These methods

Deconvolution of noisy data is an ill-posed problem, and requires some form of regularization to stabilize its solution. Tikhonov regularization is the most common method used, but it depends on the choice of a regularization parameter λ which must generally be estimated using one of several common methods. These methods can be computationally intensive, so I consider their behavior when only a portion of the sampled data is used. I show that the results of these methods converge as the sampling resolution increases, and use this to suggest a method of downsampling to estimate λ. I then present numerical results showing that this method can be feasible, and propose future avenues of inquiry.
ContributorsHansen, Jakob Kristian (Author) / Renaut, Rosemary (Thesis director) / Cochran, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05