Matching Items (7)

Filtering by

Clear all filters

Reproductive Cheating in Harvester Ants - An Agent Based Model

Description

Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does

Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does not change over time relative to other queens. Further, a queen has an individual reproductive advantage if she has a small reproductive ratio. A colony, however, has a reproductive advantage if it has queens with large ratios, as these queens produce many female workers to further colony success. We have developed an agent-based model to analyze the "cheating" phenotype observed in field research, in which queens extend their lifespans by producing disproportionately many male offspring. The model generates phenotypes and simulates years of reproductive cycles. The results allow us to examine the surviving phenotypes and determine conditions under which a cheating phenotype has an evolutionary advantage. Conditions generating a bimodal steady state solution would indicate a cheating phenotype's ability to invade a cooperative population.

Contributors

Created

Date Created
2017-05

137483-Thumbnail Image.png

It Takes Five: Basketball Teams Using Network Metrics

Description

Analytic research on basketball games is growing quickly, specifically in the National Basketball Association. This paper explored the development of this analytic research and discovered that there has been a focus on individual player metrics and a dearth of quantitative

Analytic research on basketball games is growing quickly, specifically in the National Basketball Association. This paper explored the development of this analytic research and discovered that there has been a focus on individual player metrics and a dearth of quantitative team characterizations and evaluations. Consequently, this paper continued the exploratory research of Fewell and Armbruster's "Basketball teams as strategic networks" (2012), which modeled basketball teams as networks and used metrics to characterize team strategy in the NBA's 2010 playoffs. Individual players and outcomes were nodes and passes and actions were the links. This paper used data that was recorded from playoff games of the two 2012 NBA finalists: the Miami Heat and the Oklahoma City Thunder. The same metrics that Fewell and Armbruster used were explained, then calculated using this data. The offensive networks of these two teams during the playoffs were analyzed and interpreted by using other data and qualitative characterization of the teams' strategies; the paper found that the calculated metrics largely matched with our qualitative characterizations of the teams. The validity of the metrics in this paper and Fewell and Armbruster's paper was then discussed, and modeling basketball teams as multiple-order Markov chains rather than as networks was explored.

Contributors

Agent

Created

Date Created
2013-05

137666-Thumbnail Image.png

Wada basins of attraction in diffeomorphic maps

Description

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In fact, it is possible to design a dynamical system for which the basins of attractions have this Wada property. In certain circumstances, both the Hénon map, a simple system, and the forced damped pendulum, a physical model, produce Wada basins.

Contributors

Created

Date Created
2013-05

150637-Thumbnail Image.png

A chemostat model of bacteriophage-bacteria interaction with infinite distributed delays

Description

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.

Contributors

Agent

Created

Date Created
2012

162238-Thumbnail Image.png

Network Based Models of Opinion Formation: Consensus and Beyond

Description

Understanding the evolution of opinions is a delicate task as the dynamics of how one changes their opinion based on their interactions with others are unclear.

Contributors

Agent

Created

Date Created
2021

153915-Thumbnail Image.png

Observability methods in sensor scheduling

Description

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.

Contributors

Agent

Created

Date Created
2015

156420-Thumbnail Image.png

Critical coupling and synchronized clusters in arbitrary networks of Kuramoto oscillators

Description

The Kuramoto model is an archetypal model for studying synchronization in groups

of nonidentical oscillators where oscillators are imbued with their own frequency and

coupled with other oscillators though a network of interactions. As the coupling

strength increases, there is a bifurcation to

The Kuramoto model is an archetypal model for studying synchronization in groups

of nonidentical oscillators where oscillators are imbued with their own frequency and

coupled with other oscillators though a network of interactions. As the coupling

strength increases, there is a bifurcation to complete synchronization where all oscillators

move with the same frequency and show a collective rhythm. Kuramoto-like

dynamics are considered a relevant model for instabilities of the AC-power grid which

operates in synchrony under standard conditions but exhibits, in a state of failure,

segmentation of the grid into desynchronized clusters.

In this dissertation the minimum coupling strength required to ensure total frequency

synchronization in a Kuramoto system, called the critical coupling, is investigated.

For coupling strength below the critical coupling, clusters of oscillators form

where oscillators within a cluster are on average oscillating with the same long-term

frequency. A unified order parameter based approach is developed to create approximations

of the critical coupling. Some of the new approximations provide strict lower

bounds for the critical coupling. In addition, these approximations allow for predictions

of the partially synchronized clusters that emerge in the bifurcation from the

synchronized state.

Merging the order parameter approach with graph theoretical concepts leads to a

characterization of this bifurcation as a weighted graph partitioning problem on an

arbitrary networks which then leads to an optimization problem that can efficiently

estimate the partially synchronized clusters. Numerical experiments on random Kuramoto

systems show the high accuracy of these methods. An interpretation of the

methods in the context of power systems is provided.

Contributors

Agent

Created

Date Created
2018