Matching Items (30)
Filtering by

Clear all filters

155914-Thumbnail Image.png
Description
Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane

Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane (C3) and hydrogen/hydrocarbon mixtures at room temperature. However, to date, little is known about the static thermal stability and ethylene/ethane (C2) separation characteristics of ZIF-8. This dissertation presents a set of fundamental studies to investigate the thermal stability, transport and modification of ZIF-8 membranes for light hydrocarbon separations.

Static TGA decomposition kinetics studies show that ZIF-8 nanocrystals maintain their crystallinity up to 200○C in inert, oxidizing and reducing atmospheres. At temperatures of 250○C and higher, the findings herein support the postulation that ZIF-8 nanocrystals undergo temperature induced decomposition via thermolytic bond cleaving reactions to form an imidazole-Zn-azirine structure. The crystallinity/bond integrity of ZIF-8 membrane thin films is maintained at temperatures below 150○C.

Ethane and ethylene transport was studied in single and binary gas mixtures. Thermodynamic parameters derived from membrane permeation and crystal adsorption experiments show that the C2 transport mechanism is controlled by adsorption rather than diffusion. Low activation energy of diffusion values for both C2 molecules and limited energetic/entropic diffusive selectivity are observed for C2 molecules despite being larger than the nominal ZIF-8 pore aperture and is due to pore flexibility.

Finally, ZIF-8 membranes were modified with 5,6 dimethylbenzimidazole through solvent assisted membrane surface ligand exchange to narrow the pore aperture for enhanced molecular sieving. Results show that relatively fast exchange kinetics occur at the mainly at the outer ZIF-8 membrane surface between 0-30 minutes of exchange. Short-time exchange enables C3 selectivity increases with minimal olefin permeance losses. As the reaction proceeds, the ligand exchange rate slows as the 5,6 DMBIm linker proceeds into the ZIF-8 inner surface, exchanges with the original linker and first disrupts the original framework’s crystallinity, then increases order as the reaction proceeds. The ligand exchange rate increases with temperature and the H2/C2 separation factor increases with increases in ligand exchange time and temperature.
ContributorsJames, Joshua B. (Author) / Lin, Jerry Y.S. (Thesis advisor) / Emady, Heather (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2017
157367-Thumbnail Image.png
Description
Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which factors had the greatest effect on granule formation, size distribution,

Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which factors had the greatest effect on granule formation, size distribution, and morphological properties when wet granulating microcrystalline cellulose and water. Previous experiments had identified the different growth regimes within wet granulation, as well as the granule formation mechanisms in single-drop granulation experiments, but little research has been conducted to determine how results extracted from single drop experiments could be used to better understand the first principles that drive high shear granulation. The experiment found that under a liquid solid ratio of 110%, the granule growth rate was linear as opposed to the induction growth regime experienced at higher liquid solid ratios. L/S ratios less than 100% led to a bimodal distribution comprised of large distributions of ungranulated powder and large irregular granules. Insufficient water hampered the growth of granules due to lack of enough water bridges to connect the granules and powder, while the large molecules continued to agglomerate with particles as they rotated around the mixer. The nozzle end was augmented so that drop size as well as drop height could be adjusted and compared to single-drop granulation experiments in proceeding investigations. As individual factors, neither augmentation had significant contributions to granule size, but preliminary screens identified that interaction between increasing L/S ratio and decreasing drop size could lead to narrower distributions of particles as well as greater circularity. Preliminary screening also identified that decreasing the drop height of the nozzle could increase the rate of particle growth during the 110% L/S trials without changing the growth mechanisms, indicating a way to alter the rate of steady-state particle growth. This paper screens for which factors are most pertinent to associating single-drop and wet granulation in order to develop granulation models that can ascertain information from single-drop granulations and predict the shape and size distribution of any wet granulation, without the need to run costly wet granulation experiments.
ContributorsLay, Michael (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2019
157189-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to significant energy savings on a global scale.

This research utilizes infrared imaging to investigate the effects of fill level and rotation rate on the particle bed hydrodynamics and the average wall-particle heat transfer coefficient. 3 mm silica beads and a stainless steel rotary drum with a diameter of 6 in and a length of 3 in were used at fill levels of 10 %, 17.5 %, and 25 %, and rotation rates of 2 rpm, 6 rpm, and 10 rpm. Two full factorial designs of experiments were completed to understand the effects of these factors in the presence of conduction only (Case 1) and conduction with forced convection (Case 2). Particle-particle friction caused the particle bed to stagnate at elevated temperatures in Case 1, while the inlet air velocity in Case 2 dominated the particle friction effects to maintain the flow profile. The maximum heat transfer coefficient was achieved at a high rotation rate and low fill level in Case 1, and at a high rotation rate and high fill level in Case 2. Heat losses from the system were dominated by natural convection between the hot air in the drum and the external surroundings.
ContributorsBoepple, Brandon (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2019
133519-Thumbnail Image.png
Description
This report investigates the effects of autolyzing, fermentation medium, fermentation temperature, and proofing medium on the growth and porosity of 50% whole wheat sourdough bread. A model was designed using a 24 statistical design of experiment with replicates to screen and quantify the individual and combined effects of the aforementioned

This report investigates the effects of autolyzing, fermentation medium, fermentation temperature, and proofing medium on the growth and porosity of 50% whole wheat sourdough bread. A model was designed using a 24 statistical design of experiment with replicates to screen and quantify the individual and combined effects of the aforementioned factors on the area of a 1 cm cross-sectional cut from each loaf. Fermentation temperature had the single largest effect, with colder fermented loaves being on average 10 cm2 larger than their warmer fermented counter parts. Autolyzing had little individual effect, but the strengthened gluten network abated some of the degassing and overproofing that is a consequent handling the dough or letting it ferment too much. This investigation quantifies how to maximize gluten development and yeast growth to create the airiest whole wheat sourdough, a healthier and easier to digest bread than many commercially available.
ContributorsLay, Michael Loren (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134356-Thumbnail Image.png
Description
Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the

Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the porosity of the materials, with crucial implications for the performance in many applications. Yet, the mechanisms of pore formation and collapse are poorly understood. Combining an integrated in situ and ex situ characterization approach, here we follow the evolution of porosity changes during the thermal decomposition of LDHs integrating different divalent (Mg, Ni) and trivalent (Al, Ga) metals. Variations in porous properties determined by high-resolution argon sorption are linked to the morphological and compositional changes in the samples by in situ transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, which is facilitated by the synthesis of well crystallized LDHs of large crystal size. The observations are correlated with the phase changes identified by X-ray diffraction, the mass losses evidenced by thermogravimetric analysis, the structural changes determined by infrared and nuclear magnetic resonance spectroscopy, and the pore connectivity analyzed by positron annihilation spectroscopy. The findings show that the multimetallic nature of the LDH governs the size and distribution (geometry, location, and connectivity) of the mesopores developed, which is controlled by the crystallization of the MMO phase, providing key insights for the improved design of porous mixed metal oxides.
ContributorsMurty, Rohan Aditya (Author) / Deng, Shuguang (Thesis director) / Nielsen, David R. (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133976-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to tremendous energy savings on a global scale. This study investigates the effects of drum fill level and rotation rate on the steady-state average particle bed temperature. 3 mm silica beads and a stainless steel rotary drum were used at fill levels ranging from 10 \u2014 25 % and rotation rates from 2 \u2014 10 rpm. Four heat guns were used to heat the system via conduction and convection, and an infrared camera was used to record temperature data. A three-level, two-factor, full-factorial design of experiments was employed to determine the effects of each factor on the steady-state average bed temperature. Low fill level and high rotation rate resulted in higher steady-state average bed temperatures. A quantitative model showed that rotation rate had a larger impact on the steady-state bed temperature than fill level.
ContributorsBoepple, Brandon Richard (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154753-Thumbnail Image.png
Description
The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. Thus, novel damage detection schemes are required that can sense the precursors to damage. Mechanochemistry is the area of research that involves the use of mechanical force to induce

The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. Thus, novel damage detection schemes are required that can sense the precursors to damage. Mechanochemistry is the area of research that involves the use of mechanical force to induce a chemical change, with recent study focusing on directing the mechanical force to embedded mechanophore units for a targeted chemical response. Mechanophores are molecular units that provide a measureable signal in response to an applied force, often in the form of a visible color change or fluorescent emission, and their application to thermoset network polymers has been limited. Following preliminary work on polymer blends of cyclobutane-based mechanophores and epoxy, dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophore particles were synthesized and employed to form stress sensitive particle reinforced epoxy matrix composites.

Under an applied stress, the cyclooctane-rings in the Di-AC particles revert back to their fluorescent anthracene form, which linearly enhances the overall fluorescence of the composite in response to the applied strain. The fluorescent signal further allows for stress sensing in the elastic region of the stress-strain curve, which is considered to be a form of damage precursor detection. This behavior was further analyzed at the molecular scale with corresponding molecular dynamics simulations. Following the successful application of Di-AC to an epoxy matrix, the mechanophore particles were incorporated into a polyurethane matrix to show the universal nature of Di-AC as a stress-sensitive particle filler. Interestingly, in polyurethane Di-AC could successfully detect damage with less applied strain compared to the epoxy system.

While mechanophores of varying chemistries have been covalently incorporated into elastomeric and thermoplastic polymer systems, they have not yet been covalently incorporated a thermoset network polymer. Thus, following the study of mechanophore particles as stress-sensitive fillers, two routes of grafting mechanophore units into an epoxy system to form a self-sensing nanocomposite were explored. These involved the mechanophore precursor and mechanophore, cinnamamide and di-cinnamamide, respectively. With both molecules, the free amine groups can directly bond to epoxy resin to covalently incorporate themselves within the thermoset network to form a self-sensing nanocomposite.
ContributorsNofen, Elizabeth (Author) / Dai, Lenore L (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Emady, Heather (Committee member) / Mu, Bin (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2016
154799-Thumbnail Image.png
Description
While the solution diffusion model and pore flow model dominate pervaporation transport mechanism modeling, a new model combining the solution diffusion and viscous flow models is validated using membranes with large scale defects exceeding 2 nm in diameter. A range of membranes was characterized using scanning electron microscopy and

While the solution diffusion model and pore flow model dominate pervaporation transport mechanism modeling, a new model combining the solution diffusion and viscous flow models is validated using membranes with large scale defects exceeding 2 nm in diameter. A range of membranes was characterized using scanning electron microscopy and x-ray diffraction (XRD) to determine quality and phase characteristics. MFI zeolite membranes of He/SF6 pure gas permeation ideal selectivities of 25, 15, and 3 for good, medium, and poor quality membranes were subjected to liquid pervaporations with a 5% ethanol in water feed, by weight. Feed pressure was increased from 1 to 5 atm, to validate existence of viscous flow in the defects. Component molar flux is modeled using the solution diffusion model and the viscous flow model, via J_i=F_i (γ_i x_i P_i^sat )+(ρ )/M_W ∅/μ_ij x_i P_h. A negative coefficient of thermal expansion is observed as permeances drop as a function of temperature in all three membranes, where ϕ=((ϵr_p^2)/τ∆x). Experimental parameter ϕ increased as a function of temperature, and increased with decreasing membrane quality. This further proves that zeolitic pores are shrinking in one direction, and pulling intercrystalline voids larger, increasing the (ϵ/τ) ratio. Permiabilities of the bad, medium, and good quality membrane also decreased over time for both ethanol and water, meaning that fundamental membrane characteristics changed as a function of temperature. To conclude, the model reasonably fits empirical data reasonably well.
ContributorsWilliams, Suzanne Jean (Author) / Lin, Jerry Y.S. (Thesis advisor) / Emady, Heather (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2016
155117-Thumbnail Image.png
Description
Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures

Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures to multiphasic systems featuring ionic liquid/liquid interfaces. Even more diversity is added when particles are introduced to these systems, as hard particles or soft-matter microgels interact with both ILs and water in complex ways. This work examines both miscible ionic liquid/water mixture and two-phase, immiscible ionic liquid/water systems. Extensive molecular dynamics (MD) simulations are utilized in conjunction with physical measurements to inform theoretical understanding of the nature of these systems, and this theoretical understanding is related to practical applications—in particular, the development of a low-temperature liquid electrolyte for use in molecular electronic transducer (MET) seismometers, and particle self-assembly and transport at ionic liquid/liquid interfaces such as those in Pickering emulsions.

The homogenous mixture of 1-butyl-3-methylimidazolium iodide and water is examined extensively through MD as well as physical characterization of properties. Molecular ordering within the liquid mixture is related to macroscopic properties. These mixtures are then used as the basis of an electrolyte with unusual characteristics, specifically a wide liquid temperature range with an extremely low lower bound combined with relatively low viscosity allowing excellent performance in the MET sensor. Electrolyte performance is further improved by the addition of fullerene nanoparticles, which dramatically increase device sensitivity. The reasons behind this effect are explored by testing the effect of graphene surface size and through MD simulations of fullerene and a silica nanoparticle (for contrast) in [BMIM][I]/water mixtures.

Immiscible ionic liquid/water systems are explored through MD studies of particles at IL/water interfaces. By increasing the concentration of hydrophobic nanoparticles at the IL/water interface, one study discovers the formation of a commingled IL/water/particle pseudo-phase, and relates this discovery to previously-observed unique behaviors of these interfaces, particularly spontaneous particle transport across the interface. The other study demonstrates that IL hydrophobicity can influence the deformation of thermo-responsive soft particles at the liquid/liquid interface.
ContributorsNickerson, Stella Day (Author) / Dai, Lenore L (Thesis advisor) / Yu, Hongyu (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2016
155698-Thumbnail Image.png
Description
A comprehensive and systematic investigation on the diffusion and phase behaviors of nanoparticles and macromolecules in two component liquid-liquid systems via Molecule Dynamic (MD) simulations is presented in this dissertation.

The interface of biphasic liquid systems has attracted great attention because it offers a simple, flexible, and highly reproducible template for

A comprehensive and systematic investigation on the diffusion and phase behaviors of nanoparticles and macromolecules in two component liquid-liquid systems via Molecule Dynamic (MD) simulations is presented in this dissertation.

The interface of biphasic liquid systems has attracted great attention because it offers a simple, flexible, and highly reproducible template for the assembly of a variety of nanoscale objects. However, certain important fundamental issues at the interface have not been fully explored, especially when the size of the object is comparable with the liquid molecules. In the first MD simulation system, the diffusion and self-assembly of nanoparticles with different size, shape and surface composition were studied in an oil/water system. It has been found that a highly symmetrical nanoparticle with uniform surface (e.g. buckyball) can lead to a better-defined solvation shell which makes the “effective radius” of the nanoparticle larger than its own radius, and thus, lead to slower transport (diffusion) of the nanoparticles across the oil-water interface. Poly(N-isopropylacrylamide) (PNIPAM) is a thermoresponsive polymer with a Lower Critical Solution Temperature (LCST) of 32°C in pure water. It is one of the most widely studied stimulus-responsive polymers which can be fabricated into various forms of smart materials. However, current understanding about the diffusive and phase behaviors of PNIPAM in ionic liquids/water system is very limited. Therefore, two biphasic water-ionic liquids (ILs) systems were created to investigate the interfacial behavior of PNIPAM in such unique liquid-liquid interface. It was found the phase preference of PNIPAM below/above its LCST is dependent on the nature of ionic liquids. This potentially allows us to manipulate the interfacial behavior of macromolecules by tuning the properties of ionic liquids and minimizing the need for expensive polymer functionalization. In addition, to seek a more comprehensive understanding of the effects of ionic liquids on the phase behavior of PNIPAM, PNIPAM was studied in two miscible ionic liquids/water systems. The thermodynamic origin causes the reduction of LCST of PNIPAM in imidazolium based ionic liquids/water system was found. Energy analysis, hydrogen boding calculation and detailed structural quantification were presented in this study to support the conclusions.
ContributorsGao, Wei (Author) / Dai, Lenore (Thesis advisor) / Jiao, Yang (Committee member) / Liu, Yongming (Committee member) / Green, Matthew (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2017