Matching Items (51)
Filtering by

Clear all filters

133145-Thumbnail Image.png
Description
This study aims to determine the feasibility of producing mechanophore-incorporated epoxy that can be healed. This was accomplished by grafting a synthesized mechanophore into tris(2-aminoethyl)amine to create a new epoxy hardener. Then this branched hardener was combined with a second hardener, diethylenetriamine (DETA). A proper ratio of the branched hardener

This study aims to determine the feasibility of producing mechanophore-incorporated epoxy that can be healed. This was accomplished by grafting a synthesized mechanophore into tris(2-aminoethyl)amine to create a new epoxy hardener. Then this branched hardener was combined with a second hardener, diethylenetriamine (DETA). A proper ratio of the branched hardener to the DETA will ensure that the created epoxy will retain the force responsive characteristics without a noticeable decline in both the physical and thermal properties. Furthermore, it was desired that the natural structure of the epoxy would be left in place, and there would only be enough branched hardener present to elicit a force response and provide the possibility for healing. The two hardeners would then be added to Diglycidyl Ether of Bisphenol F (DGEBPF), which is the epoxy resin. The mechanophore-incorporated epoxy was compared to a standard epoxy—just DETA and DGEBPF—and it was determined that the incorporation of the mechanophore led to an 8.2 degrees Celsius increase in glass transition temperature, and a 33.0% increase in cross link density. This justified the mechanophore-incorporated epoxy as a feasible alternative to the standard, as its primary thermal and physical properties were not only equal, but superior. Then samples of the mechanophore-incorporated epoxy were damaged with a 3% tensile strain. This would cause a cycloreversion in the central cyclobutane inside of the mechanophore. Then they were healed with UV light, which would redimerize the severed hardener moieties. The healed samples saw a 4.69% increase in cross-link density, demonstrating that healing was occurring.
ContributorsPauley, Bradley (Author) / Dai, Lenore (Thesis director) / Gunckel, Ryan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133519-Thumbnail Image.png
Description
This report investigates the effects of autolyzing, fermentation medium, fermentation temperature, and proofing medium on the growth and porosity of 50% whole wheat sourdough bread. A model was designed using a 24 statistical design of experiment with replicates to screen and quantify the individual and combined effects of the aforementioned

This report investigates the effects of autolyzing, fermentation medium, fermentation temperature, and proofing medium on the growth and porosity of 50% whole wheat sourdough bread. A model was designed using a 24 statistical design of experiment with replicates to screen and quantify the individual and combined effects of the aforementioned factors on the area of a 1 cm cross-sectional cut from each loaf. Fermentation temperature had the single largest effect, with colder fermented loaves being on average 10 cm2 larger than their warmer fermented counter parts. Autolyzing had little individual effect, but the strengthened gluten network abated some of the degassing and overproofing that is a consequent handling the dough or letting it ferment too much. This investigation quantifies how to maximize gluten development and yeast growth to create the airiest whole wheat sourdough, a healthier and easier to digest bread than many commercially available.
ContributorsLay, Michael Loren (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134356-Thumbnail Image.png
Description
Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the

Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the porosity of the materials, with crucial implications for the performance in many applications. Yet, the mechanisms of pore formation and collapse are poorly understood. Combining an integrated in situ and ex situ characterization approach, here we follow the evolution of porosity changes during the thermal decomposition of LDHs integrating different divalent (Mg, Ni) and trivalent (Al, Ga) metals. Variations in porous properties determined by high-resolution argon sorption are linked to the morphological and compositional changes in the samples by in situ transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, which is facilitated by the synthesis of well crystallized LDHs of large crystal size. The observations are correlated with the phase changes identified by X-ray diffraction, the mass losses evidenced by thermogravimetric analysis, the structural changes determined by infrared and nuclear magnetic resonance spectroscopy, and the pore connectivity analyzed by positron annihilation spectroscopy. The findings show that the multimetallic nature of the LDH governs the size and distribution (geometry, location, and connectivity) of the mesopores developed, which is controlled by the crystallization of the MMO phase, providing key insights for the improved design of porous mixed metal oxides.
ContributorsMurty, Rohan Aditya (Author) / Deng, Shuguang (Thesis director) / Nielsen, David R. (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134362-Thumbnail Image.png
Description
As global population and demand for electrical power increase, humanity is faced with the growing challenge of harnessing and distributing enough energy to sustain the developing world. Currently, fossil fuels (coal
atural gas) are our main sources of electricity. However, their cost is increasing, they are nonrenewable, and they are very

As global population and demand for electrical power increase, humanity is faced with the growing challenge of harnessing and distributing enough energy to sustain the developing world. Currently, fossil fuels (coal
atural gas) are our main sources of electricity. However, their cost is increasing, they are nonrenewable, and they are very harmful to the environment. Thus, capacity expansion in the renewable energy sector must be realized to offset higher energy demand and reduce dependence on fossil fuels. Solar energy represents a practical solution, as installed global solar capacity has been increasing exponentially over the past 2 decades. However, even with government incentives, solar energy price ($/kWh) continues to be highly dependent on political climate and raw material (silicon and silver) cost. To realistically and cost effectively meet the projected expansions within the solar industry, silver must be replaced with less costly and more abundant metals (such as copper) in the front-grid metallization process of photovoltaic cells. Copper, while offering both higher achievable efficiencies and a raw material cost nearly 100 times cheaper than silver, has inherent disadvantages. Specifically, copper diffuses rapidly into the silicon substrate, requires more complex and error-prone processing steps, and tends to have less adhesive strength, reducing panel robustness. In this study, nickel deposition via sputtering was analyzed, as well as overall potential of nickel as a seed layer for copper plating, which also provides a barrier layer to copper diffusion in silicon. Thermally-formed nickel silicide also reduces contact resistivity, increasing cell efficiency. It was found that at 400 \u00B0C, ideal nickel silicide formation occurred. By computer modeling, contact resistivity was found to have a significant impact on cell efficiency (up to 1.8%). Finally, sputtering proved useful to analyze nickel silicide formation, but costs and time requirements prevent it from being a practical industrial-scale metallization method.
ContributorsBliss, Lyle Brewster (Author) / Bowden, Stuart (Thesis director) / Karas, Joseph (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134363-Thumbnail Image.png
Description
Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed the impact of pretreatment on BMPs and microbial electrochemical cells (MECs). In the first set of experiments, BMP tests were

Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed the impact of pretreatment on BMPs and microbial electrochemical cells (MECs). In the first set of experiments, BMP tests were performed using alkaline and thermal pretreated waste activated sludge (WAS), a control group, and a negative control group as samples and AD sludge (ADS) as inoculum. The data obtained suggested that BMPs do not necessarily require ADS, since samples without inoculum produced 5-20% more CH4. However, ADS appears to reduce the initial methanogenesis lag in BMPs, as no pH inhibition and immediate CH4 production were observed. Consumption rate constants, which are related to hydrolysis, were calculated using three methods based on CH4 production, SSCOD concentration, and the sum of both, called the lumped parameter. All the values observed were within literature values, yet each provide a different picture of what is happening in the system. For the second set of experiments, the current production of 3 H-type MECs were compared to the CH4 production of BMPs to assess WAS solids' biodegradability and consumption rates relative to the pretreatment methods employed for their substrate. BMPs fed with pretreated and control WAS solids were performed at 0.42 and 1.42 WAS-to-ADS ratios. An initial CH4 production lag of about 12 days was observed in the BMP assays, but MECs immediately began producing current. When compared in terms of COD, MECs produced more current than the BMPs produced CH4, indicating that the MEC may be capable of consuming different types of substrate and potentially overestimating CH4 production in anaerobic digesters. I also observed 2 to 3 different consumption events in MECs versus 3 for BMP assays, but these had similar magnitudes, durations, and starting times in the control and thermal pretreated WAS-fed assays and not in alkaline assays. This might indicate that MECs identified the differences of alkaline pretreatment, but not between control WAS and thermal pretreated WAS. Furthermore, HPLC results suggest at least one hydrolysis event, as valerate, butyrate, and traces of acetate are observed in the reactors' effluents. Moreover, a possible inhibition of valerate-fixing microbial communities due to pretreatment and the impossibility of valerate consumption by ARB might explain its presence in the reactors' effluents.
ContributorsBrown Munoz, Francisco (Author) / Torres, Cesar (Thesis director) / Rittmann, Bruce E. (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133976-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to tremendous energy savings on a global scale. This study investigates the effects of drum fill level and rotation rate on the steady-state average particle bed temperature. 3 mm silica beads and a stainless steel rotary drum were used at fill levels ranging from 10 \u2014 25 % and rotation rates from 2 \u2014 10 rpm. Four heat guns were used to heat the system via conduction and convection, and an infrared camera was used to record temperature data. A three-level, two-factor, full-factorial design of experiments was employed to determine the effects of each factor on the steady-state average bed temperature. Low fill level and high rotation rate resulted in higher steady-state average bed temperatures. A quantitative model showed that rotation rate had a larger impact on the steady-state bed temperature than fill level.
ContributorsBoepple, Brandon Richard (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134847-Thumbnail Image.png
Description
The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the

The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the DARPin in E. coli for simple expression. Following growth and purification the proteins were validated using SDS-PAGE, Western Blot, BCA and indirect sandwich ELISA using transgenic mouse brain tissue. Targeted functionality of the DARPin structure was utilized during characterization methods to ensure the efficacy of the protein as a diagnostic for the respective disease targets. Both the ADC7 and PDC1 demonstrated improved binding with transgenic mice compared to wild type with a maximum 1.8 and 1.7 relative ratio, respectively. Additionally, both of the proteins demonstrated exclusive binding to their disease target and did not provide false positive results.
ContributorsTindell, John (Co-author) / Card, Emma (Co-author) / Sierks, Michael (Thesis director) / Nannenga, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153684-Thumbnail Image.png
Description
Vapor intrusion (VI) pathway assessment often involves the collection and analysis of groundwater, soil gas, and indoor air data. There is temporal variability in these data, but little is understood about the characteristics of that variability and how it influences pathway assessment decision-making. This research included the first-ever collection

Vapor intrusion (VI) pathway assessment often involves the collection and analysis of groundwater, soil gas, and indoor air data. There is temporal variability in these data, but little is understood about the characteristics of that variability and how it influences pathway assessment decision-making. This research included the first-ever collection of a long-term high-frequency indoor air data set at a house with VI impacts overlying a dilute chlorinated solvent groundwater plume. It also included periodic synoptic snapshots of groundwater and soil gas data and high-frequency monitoring of building conditions and environmental factors. Indoor air trichloroethylene (TCE) concentrations varied over three orders-of-magnitude under natural conditions, with the highest daily VI activity during fall, winter, and spring months. These data were used to simulate outcomes from common sampling strategies, with the result being that there was a high probability (up to 100%) of false-negative decisions and poor characterization of long-term exposure. Temporal and spatial variability in subsurface data were shown to increase as the sampling point moves from source depth to ground surface, with variability of an order-of-magnitude or more for sub-slab soil gas. It was observed that indoor vapor sources can cause subsurface vapor clouds and that it can take days to weeks for soil gas plumes created by indoor sources to dissipate following indoor source removal. A long-term controlled pressure method (CPM) test was conducted to assess its utility as an alternate approach for VI pathway assessment. Indoor air concentrations were similar to maximum concentrations under natural conditions (9.3 μg/m3 average vs. 13 μg/m3 for 24 h TCE data) with little temporal variability. A key outcome was that there were no occurrences of false-negative results. Results suggest that CPM tests can produce worst-case exposure conditions at any time of the year. The results of these studies highlight the limitations of current VI pathway assessment approaches and demonstrate the need for robust alternate diagnostic tools, such as CPM, that lead to greater confidence in data interpretation and decision-making.
ContributorsHolton, Chase Weston (Author) / Johnson, Paul C (Thesis advisor) / Fraser, Matthew (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2015
137722-Thumbnail Image.png
Description
Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the challenges associated with performing an arson investigation, in particular the

Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the challenges associated with performing an arson investigation, in particular the collection and interpretation of reliable data. PLOT-cryoadsorption, a dynamic headspace sampling technique developed at the National Institute of Standards and Technology, was proposed as an alternate technique for extracting ignitable liquid residues for analysis. The method was generally shown to be robust, flexible, precise, and accurate for a variety of applications. The possibility of using a real-time in situ monitor for screening samples was also discussed. This work, conducted by an undergraduate researcher, has implications in educational curricula as well as in the field of forensic science.
ContributorsNichols, Jessica Ellen (Author) / Forzani, Erica (Thesis director) / Nielsen, David (Committee member) / Tsow, Francis (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose.

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
ContributorsMcDaniel, Matthew Cary (Author) / Nielsen, David (Thesis director) / Lind, Mary Laura (Committee member) / McKenna, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05