Matching Items (6)
Filtering by

Clear all filters

136494-Thumbnail Image.png
Description
The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be

The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be able to withstand these harsh conditions due the incorporation of a resilient impermeable polymer layer that will be cast above the lower hydrophilic layer. Nanoparticles called zeolites will act as a water selective pathway through this impermeable layer and allow water to flow through the membrane. This membrane will be made using a variety of methods and polymers to determine both the cheapest and most effective way of creating this chemical resistant membrane. If this research is successful, many more water sources can be tapped since the membranes will be able to withstand hard conditions. This document is primarily focused on our progress on the development of a highly permeable polymer-zeolite film that makes up the bottom layer of the membrane. Multiple types of casting methods were investigated and it was determined that spin coating at 4000 rpm was the most effective. Based on a literature review, we selected silicalite-1 zeolites as the water-selective nanoparticle component dispersed in a casting solution of polyacrylonitrile in N-methylpyrrolidinone to comprise this hydrophilic layer. We varied the casting conditions of several simple solution-casting methods to produce thin films on the porous substrate with optimal film properties for our membrane design. We then cast this solution on other types of support materials that are more flexible and inexpensive to determine which combination resulted in the thinnest and most permeable film.
ContributorsHerrera, Sofia Carolina (Author) / Lind, Mary Laura (Thesis director) / Khosravi, Afsaneh (Committee member) / Hestekin, Jamie (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
134431-Thumbnail Image.png
Description
The objective of this research study is to assess the effectiveness of a poster-based messaging campaign and engineering-based activities for middle school and high school students to encourage students to explore and to pursue chemical engineering. Additionally, presentations are incorporated into both methods to provide context and improve understanding of

The objective of this research study is to assess the effectiveness of a poster-based messaging campaign and engineering-based activities for middle school and high school students to encourage students to explore and to pursue chemical engineering. Additionally, presentations are incorporated into both methods to provide context and improve understanding of the presented poster material or activity. Pre-assessments and post-assessments are the quantitative method of measuring effectiveness. For the poster campaign, ASU juniors and seniors participated in the poster campaign by producing socially relevant messages about their research or aspirations to address relevant chemical engineering problems. For the engineering-based activity, high school students participated in an Ira A. Fulton Schools of Engineering program "Young Engineers Shape the World" in which the students participated in six-hour event learning about four engineering disciplines, and the chemical engineering presentation and activity was conducted in one of the sessions. Pre-assessments were given at the beginning of the event, and the post-assessments were provided towards the end of the event. This honors thesis project will analyze the collected data.
ContributorsBueno, Daniel Tolentino (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Chemical Engineering Program (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134702-Thumbnail Image.png
Description
This study aims to provide a foundation for future work on photo-responsive polymer composite materials to be utilized in additive manufacturing processes. The curing rate of 2,2-dimethoxy-2-phenyl-acetophenone (DMPA) in thin (<20 µm) and thick (>2 mm) layers of DMPA and poly(ethylene glycol) diacrylate (PEG-DA) mixtures was assessed for 5.0

This study aims to provide a foundation for future work on photo-responsive polymer composite materials to be utilized in additive manufacturing processes. The curing rate of 2,2-dimethoxy-2-phenyl-acetophenone (DMPA) in thin (<20 µm) and thick (>2 mm) layers of DMPA and poly(ethylene glycol) diacrylate (PEG-DA) mixtures was assessed for 5.0 w/v% (grams per 100 mL) concentrations of DMPA dissolved in PEG-DA. The polymerization rate and quality of curing was found to decrease as the concentration of DMPA increased beyond 1.0 w/v%; thus, confirming the existence of an optimum photo-initiator concentration for a specific sheet thickness. The optimum photo-initiator concentration for a 3-3.1 mm thick sheet of PEG-DA microstructure was determined to be between 0.3 and 0.38 w/v% DMPA. The addition of 1,6-hexanediol or 1,3-butanediol to the optimum photo-initiator concentrated solution of DMPA and PEG-DA was found to increase the Tg of the samples; however, the samples could not fully cure within 40-50 s, which suggested a decrease in polymerization rate. Lastly, the DMPA photo-initiator does not produce gaseous byproducts and is translucent when fully cured, which makes it attractive for infusion with strengthening materials because quality light penetration is paramount to quick polymerization rates. It is recommended that more trials be conducted to evaluate the mechanical properties of the optimum curing rate for DMPA and PEG-DA microstructures as well as a mechanical property comparison following the addition of either of the two alcohols.
ContributorsPiper, Tyler Irvin (Author) / Green, Green (Thesis director) / Lind, Mary Laura (Committee member) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134363-Thumbnail Image.png
Description
Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed the impact of pretreatment on BMPs and microbial electrochemical cells (MECs). In the first set of experiments, BMP tests were

Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed the impact of pretreatment on BMPs and microbial electrochemical cells (MECs). In the first set of experiments, BMP tests were performed using alkaline and thermal pretreated waste activated sludge (WAS), a control group, and a negative control group as samples and AD sludge (ADS) as inoculum. The data obtained suggested that BMPs do not necessarily require ADS, since samples without inoculum produced 5-20% more CH4. However, ADS appears to reduce the initial methanogenesis lag in BMPs, as no pH inhibition and immediate CH4 production were observed. Consumption rate constants, which are related to hydrolysis, were calculated using three methods based on CH4 production, SSCOD concentration, and the sum of both, called the lumped parameter. All the values observed were within literature values, yet each provide a different picture of what is happening in the system. For the second set of experiments, the current production of 3 H-type MECs were compared to the CH4 production of BMPs to assess WAS solids' biodegradability and consumption rates relative to the pretreatment methods employed for their substrate. BMPs fed with pretreated and control WAS solids were performed at 0.42 and 1.42 WAS-to-ADS ratios. An initial CH4 production lag of about 12 days was observed in the BMP assays, but MECs immediately began producing current. When compared in terms of COD, MECs produced more current than the BMPs produced CH4, indicating that the MEC may be capable of consuming different types of substrate and potentially overestimating CH4 production in anaerobic digesters. I also observed 2 to 3 different consumption events in MECs versus 3 for BMP assays, but these had similar magnitudes, durations, and starting times in the control and thermal pretreated WAS-fed assays and not in alkaline assays. This might indicate that MECs identified the differences of alkaline pretreatment, but not between control WAS and thermal pretreated WAS. Furthermore, HPLC results suggest at least one hydrolysis event, as valerate, butyrate, and traces of acetate are observed in the reactors' effluents. Moreover, a possible inhibition of valerate-fixing microbial communities due to pretreatment and the impossibility of valerate consumption by ARB might explain its presence in the reactors' effluents.
ContributorsBrown Munoz, Francisco (Author) / Torres, Cesar (Thesis director) / Rittmann, Bruce E. (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose.

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
ContributorsMcDaniel, Matthew Cary (Author) / Nielsen, David (Thesis director) / Lind, Mary Laura (Committee member) / McKenna, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
135735-Thumbnail Image.png
Description
One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to

One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to recover potable water from waste. For use as the water-selective component in this membrane design Linde Type A zeolites were synthesized for optimal size without the use of a template. Current template-free synthesis of zeolite LTA produces particles that are too large for our application therefore the particle size was reduced in this study to reduce fouling of the membrane while also investigating the nanoparticle synthesis mechanisms. The time and temperature of the reaction and the aging of the precursor gel were systematically modified and observed to determine the optimal conditions for producing the particles. Scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray analysis were used for characterization. Sub-micron sized particles were synthesized at 2 weeks aging time at -8°C with an average size of 0.6 micrometers, a size suitable for our membrane. There is a limit to the posterity and uniformity of particles produced from modifying the reaction time and temperature. All results follow general crystallization theory. Longer aging produced smaller particles, consistent with nucleation theory. Spinodal decomposition is predicted to affect nucleation clustering during aging due to the temperature scheme. Efforts will be made to shorten the effective aging time and these particles will eventually be incorporated into our mixed matrix osmosis membrane.
ContributorsKing, Julia Ann (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05