Matching Items (6)
Filtering by

Clear all filters

156977-Thumbnail Image.png
Description
Excessive weight gain during pregnancy is a significant public health concern and has been the recent focus of novel, control systems-based interventions. Healthy Mom Zone (HMZ) is an intervention study that aims to develop and validate an individually tailored and intensively adaptive intervention to manage weight gain for overweight or

Excessive weight gain during pregnancy is a significant public health concern and has been the recent focus of novel, control systems-based interventions. Healthy Mom Zone (HMZ) is an intervention study that aims to develop and validate an individually tailored and intensively adaptive intervention to manage weight gain for overweight or obese pregnant women using control engineering approaches. Motivated by the needs of the HMZ, this dissertation presents how to use system identification and state estimation techniques to assist in dynamical systems modeling and further enhance the performance of the closed-loop control system for interventions.

Underreporting of energy intake (EI) has been found to be an important consideration that interferes with accurate weight control assessment and the effective use of energy balance (EB) models in an intervention setting. To better understand underreporting, a variety of estimation approaches are developed; these include back-calculating energy intake from a closed-form of the EB model, a Kalman-filter based algorithm for recursive estimation from randomly intermittent measurements in real time, and two semi-physical identification approaches that can parameterize the extent of systematic underreporting with global/local modeling techniques. Each approach is analyzed with intervention participant data and demonstrates potential of promoting the success of weight control.

In addition, substantial efforts have been devoted to develop participant-validated models and incorporate into the Hybrid Model Predictive Control (HMPC) framework for closed-loop interventions. System identification analyses from Phase I led to modifications of the measurement protocols for Phase II, from which longer and more informative data sets were collected. Participant-validated models obtained from Phase II data significantly increase predictive ability for individual behaviors and provide reliable open-loop dynamic information for HMPC implementation. The HMPC algorithm that assigns optimized dosages in response to participant real time intervention outcomes relies on a Mixed Logical Dynamical framework which can address the categorical nature of dosage components, and translates sequential decision rules and other clinical considerations into mixed-integer linear constraints. The performance of the HMPC decision algorithm was tested with participant-validated models, with the results indicating that HMPC is superior to "IF-THEN" decision rules.
ContributorsGuo, Penghong (Author) / Rivera, Daniel E. (Thesis advisor) / Peet, Matthew M. (Committee member) / Forzani, Erica (Committee member) / Deng, Shuguang (Committee member) / Pavlic, Theodore P. (Committee member) / Arizona State University (Publisher)
Created2018
157681-Thumbnail Image.png
Description
Zwitterionic polymers, due to their supurior capability of electrostatically induced hydration, have been considered as effective functionalities to alleviate bio-fouling of reverse osmosis (RO) membranes. Bulk modification of polysulfone-based matrices to improve hydrophilicity, on the other hand, is favored due to the high membrane performance, processibility, and intrinsic chlorine resistance.

Zwitterionic polymers, due to their supurior capability of electrostatically induced hydration, have been considered as effective functionalities to alleviate bio-fouling of reverse osmosis (RO) membranes. Bulk modification of polysulfone-based matrices to improve hydrophilicity, on the other hand, is favored due to the high membrane performance, processibility, and intrinsic chlorine resistance. Here a novel synthetic method was demonstrated to prepare zwitterionic poly(arylene ether sulfone) (PAES) copolymers, which was blended with native polysulfone (PSf) to fabricate free-standing asymmetric membranes via non-solvent induced phase separation process. Both the porosity of the support layer and surface hydrophilicity increased drastically due to the incorporation of zwitterion functionalities in the rigid polysulfone matrix. The water permeance and antifouling ability of the blend membranes were both remarkably improved to 2.5 Lm−2 h−1 bar−1 and 94% of flux recovery ratio, respectively, while salt rejection remained at a high level (98%) even under the high exposure to chlorine (8,000 ppm•h). Besides the preliminary blended membrane design, for the future membrane property enhancement, this dissertation also focused on polymer structure optimizations via elucidating the fundamentals from two perspectives: 1). Synthetic reaction kinetics and mechanisms on polycondensation of PAES. Interestingly, in combination of experiments and the computational calculations by density functional theory (DFT) methods in this work, only the aryl chlorides (ArCl) monomer follows the classical second-order reaction kinetics of aromatic nucleophilic substitution (SNAr) mechanism, while the kinetics of the aryl fluorides (ArF) reaction fit a third-order rate law. The third order reaction behavior of the ArF monomer is attributed to the activation of the carbon-fluorine bond by two potassium cations (at least one bounded to phenolate), which associate as a strong three-body complex. This complex acts as the predominant reactant during the attack by the nucleophile. 2). Optimized copolymer structures were developed for controlled high molecular weight (Mw ~ 65 kDa) and zwitterionic charge content (0~100 mol%), via off-set stoichiometry during polycondensations, following with thiol-ene click reaction and ring-opening of sultone to introduce the sulfobetaine functional groups. The structure-property-morphology relationships were elucidated for better understanding atomic-level features in the charged polymers for future high-performance desalination applications.
ContributorsYang, Yi, Ph.D (Author) / Green, Matthew D (Thesis advisor) / Lin, Jerry Y.S. (Committee member) / Lind, Marylaura (Committee member) / Perreault, Francois (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2019
158878-Thumbnail Image.png
Description
The continued reliance on fossil fuel for energy resources has proven to be unsustainable, leading to depletion of world reserves and emission of greenhouse gases during their combustion. Therefore, research initiatives to develop potentially carbon-neutral biofuels were given the highest importance. Hydrothermal liquefaction (HTL, a thermochemical conversion process) of microalgae

The continued reliance on fossil fuel for energy resources has proven to be unsustainable, leading to depletion of world reserves and emission of greenhouse gases during their combustion. Therefore, research initiatives to develop potentially carbon-neutral biofuels were given the highest importance. Hydrothermal liquefaction (HTL, a thermochemical conversion process) of microalgae is recognized as a favorable and efficient technique to produce liquid biofuels from wet feedstocks. In this work, three different microalgae (Kirchneriella sp., Galdieria sulphuraria, Micractinium sp.) grown and harvested at Arizona State University were hydrothermally liquefied to optimize their process conditions under different temperatures (200-375 °C), residence times (15-60 min), solids loadings (10-20 wt.%), and process pressures (9-24 MPa). A one-factor-at-a-time approach was employed, and comprehensive experiments were conducted at 10 % solid loadings and a residence time of 30 min. Co-liquefaction of Salicornia bigelovii Torr. (SL), Swine manure (SM) with Cyanidioschyzon merolae (CM) was tested for the presence of synergy. A positive synergistic effect was observed during the co-liquefaction of biomasses, where the experimental yield (32.95 wt.%) of biocrude oil was higher than the expected value (29.23 wt.% ). Co-liquefaction also led to an increase in the energy content of the co-liquefied biocrude oil and a higher energy recovery rate ( 88.55 %). The HTL biocrude was measured for energy content, elemental, and chemical composition using GC-MS. HTL aqueous phase was analyzed for potential co-products by spectrophotometric techniques and is rich in soluble carbohydrates, dissolved ammoniacal nitrogen, and phosphates. HTL biochar was studied for its nutrient content (nitrogen and phosphorous) and viability of its recovery to cultivate algae without any inhibition using the nutrient leaching. HTL biochar was also studied to produce hydrogen via pyrolysis using a membrane reactor at 500 °C, 1 atm, for 24 h to produce 5.93 wt.% gas. The gaseous product contains 45.7 mol % H2, 44.05 ml % CH4, and 10.25 mol % of CO. The versatile applications of HTL biochar were proposed from a detailed physicochemical characterization. The metal impurities in the algae, bio-oil, and biochar were quantified by ICP-OES where algae and biochar contain a large proportion of phosphorous and magnesium.
ContributorsDandamudi, Kodanda Phani Raj (Author) / Deng, Shuguang (Thesis advisor) / Lammers, Peter J. (Committee member) / Fini, Elham H. (Committee member) / Lind Thomas, MaryLaura (Committee member) / Varman, Arul M. (Committee member) / Arizona State University (Publisher)
Created2020
158017-Thumbnail Image.png
Description
Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or

Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or O2-permeable membranes themselves, but also can be incorporated with molten carbonate to form dual-phase membranes for CO2 separation.

Oxygen sorption/desorption properties of perovskite oxides with and without oxygen vacancy were investigated first by thermogravimetric analysis (TGA) and fixed-bed experiments. The oxide with unique disorder-order phase transition during desorption exhibited an enhanced oxygen desorption rate during the TGA measurement but not in fixed-bed demonstrations. The difference in oxygen desorption rate is due to much higher oxygen partial pressure surrounding the sorbent during the fixed-bed oxygen desorption process, as revealed by X-ray diffraction (XRD) patterns of rapidly quenched samples.

Research on using perovskite oxides as CO2-permeable dual-phase membranes was subsequently conducted. Two CO2-resistant MIEC perovskite ceramics, Pr0.6Sr0.4Co0.2Fe0.8 O3-δ (PSCF) and SrFe0.9Ta0.1O3-δ (SFT) were chosen as support materials for membrane synthesis. PSCF-molten carbonate (MC) and SFT-MC membranes were prepared for CO2-O2 counter-permeation. The geometric factors for the carbonate phase and ceramic phase were used to calculate the effective carbonate and oxygen ionic conductivity in the carbonate and ceramic phase. When tested in CO2-O2 counter-permeation set-up, CO2 flux showed negligible change, but O2 flux decreased by 10-32% compared with single-component permeation. With CO2 counter-permeation, the total oxygen permeation flux is higher than that without counter-permeation.

A new concept of CO2-permselective membrane reactor for hydrogen production via steam reforming of methane (SRM) was demonstrated. The results of SRM in the membrane reactor confirm that in-situ CO2 removal effectively promotes water-gas shift conversion and thus enhances hydrogen yield. A modeling study was also conducted to assess the performance of the membrane reactor in high-pressure feed/vacuum sweep conditions, which were not carried out due to limitations in current membrane testing set-up. When 5 atm feed pressure and 10-3 atm sweep pressure were applied, the membrane reactor can produce over 99% hydrogen stream in simulation.
ContributorsWu, Han-Chun (Author) / Lin, Jerry Y.S. (Thesis advisor) / Deng, Shuguang (Committee member) / Jiao, Yang (Committee member) / Emady, Heather (Committee member) / Muhich, Christopherq (Committee member) / Arizona State University (Publisher)
Created2020
161285-Thumbnail Image.png
Description
Lithium-ion and lithium-metal batteries are deemed to be the choice of energy storage media for the future. However, they are not entirely safe and their performance in terms of cycle life and charging rates is sub-optimal. A majority of these issues arise from the currently used flammable polyolefinic separators and

Lithium-ion and lithium-metal batteries are deemed to be the choice of energy storage media for the future. However, they are not entirely safe and their performance in terms of cycle life and charging rates is sub-optimal. A majority of these issues arise from the currently used flammable polyolefinic separators and carbonate solvent based electrolytes. This work utilizes in-house developed and specific property tuned electrode-coated inorganic separators in combination with a fire-proof electrolyte to resolve the above stated concerns.Firstly, to improve the safety of the lithium-ion cell with a commercial polypropylene separator a thermally stable in-house developed electrode coated quartz silica separator is utilized. The silica separator due to its better electrolyte wettability, electrolyte uptake and lower resistance also offers better capacity retention (~ 15 %) at high rates of discharge. Subsequently, research on developing a completely safe lithium-ion battery was conducted by replacing the traditional carbonate solvent based electrolyte with a fire-proof lithium bis-fluoro sulphonyl-imide salt/tri-methyl phosphate solvent electrolyte. However, this electrolyte has a high viscosity and low separator wetting rate. A microporous in house synthesized silicalite electrode-coated separator due to its high surface energy functionalizes the viscous fire-proof electrolyte and together they are tested in a full-cell. The intra-particle pores of the silicalite separator result in a thinner and more robust solid electrolyte interface on graphite. This results in about 20 % higher capacity retention during long term cycling when compared to the polypropylene separator used in the same full-cell. To enable stable and fast charging lithium-metal batteries free from dendrite propagation related failure, plate shaped γ-alumina and silicalite electrode-coated separators with high tortuosity are developed and used in a lithium-metal full-cell battery, with the former separator having no intra-particle pores and the latter having them. The γ-alumina separators show improvements in dendrite propagation prevention up to 3 C-rate of charge/discharge but a loss in active lithium is seen beyond the 75th cycle. However, microporous plate-shaped silicalite separators did not show any loss in active lithium even at 3 C-rate for 100 cycles due to the homogenized lithium-ion flux at the anode, while also preventing dendrite propagation.
ContributorsRafiz, Kishen (Author) / Lin, Jerry Y.S (Thesis advisor) / Muhich, Christopher (Committee member) / Kannan, Arunachala (Committee member) / Deng, Shuguang (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2021
187602-Thumbnail Image.png
Description
Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate

Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate reduction to inform improved remediation technologies can be done using Density functional theory (DFT) calculations. The adsorption of selenate, selenite, and arsenate was investigated on the alumina and hematite to inform sorbent design strategies. Adsorption energies were calculated as a function of surface structure, composition, binding motif, and pH within a hybrid implicit-explicit solvation strategy. Correlations between surface property descriptors including water network structure, cationic species identity, and facet and the adsorption energies of the ions show that the surface water network controls the adsorption energy more than any other, including the cationic species of the metal-oxide. Additionally, to achieve selectivity for selenate over sulphate, differences in their electronic structure must be exploited, for example by the reduction of selenate to selenite by Ti3+ cations. Thermochemical or electrochemical reduction pathways to convert NO3- to N2 or NH3, which are benign or value-added products, respectively are examined over single-atom electrocatalysts (SAC) in Cu. The activity and selectivity for nitrate reduction are compared with the competitive hydrogen evolution reaction (HER). Cu suppresses HER but produces toxic NO2- because of a high activation barrier for cleaving the second N-O bond. SACs provide secondary sites for reaction and break traditional linear scaling relationships. Ru-SACs selectively produce NH3 because N-O bond scission is facile, and the resulting N remains isolated on SAC sites; reacting with H+ from solvating H2O to form ammonia. Conversely, Pd-SAC forms N2 because the reduced N* atoms migrate to the Cu surface, which has a low H availability, allowing N atoms to combine to N2. This relation between N* binding preference and reduction product is demonstrated across an array of SAC elements. Hence, the solvation effects on the surface critically alter the activity of adsorption and catalysis and the removal of toxic pollutants can be improved by altering the surface water network.
ContributorsGupta, Srishti (Author) / Muhich, Christopher L (Thesis advisor) / Singh, Arunima (Committee member) / Emady, Heather (Committee member) / Westerhoff, Paul (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023