Matching Items (6)
Filtering by

Clear all filters

153370-Thumbnail Image.png
Description
Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.
ContributorsMa, Xiaoli (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2015
156155-Thumbnail Image.png
Description
This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with

This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20µm - 200µm, fine traces with varying widths of 3µm - 30µm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead to show “smart” control of deposition rate at the top and bottom of via to avoid void formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical characteristics of bulk copper is also shown to enable high reliability substrate packages for the IC packaging industry.
ContributorsGanesan, Kousik (Author) / Tasooji, Amaneh (Thesis advisor) / Manepalli, Rahul (Committee member) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018
154786-Thumbnail Image.png
Description
Lithium ion batteries have emerged as the most popular energy storage system, but they pose safety issues under extreme temperatures or in the event of a thermal runaway. Lithium ion batteries with inorganic separators offer the advantage of safer operation. An inorganic separator for lithium ion battery was prepared

Lithium ion batteries have emerged as the most popular energy storage system, but they pose safety issues under extreme temperatures or in the event of a thermal runaway. Lithium ion batteries with inorganic separators offer the advantage of safer operation. An inorganic separator for lithium ion battery was prepared by an improved method of blade coating α-Al2O3 slurry directly on the electrode followed by drying. The improved separator preparation involves a twice-coating process instead of coating the slurry all at once in order to obtain a thin (~40 µm) and uniform coat. It was also found that α-Al2O3 powder with particle size greater than the pore size in the electrode is preferable for obtaining a separator with 40 µm thickness and consistent cell performance. Unlike state-of-the-art polyolefin separators such as polypropylene (PP) which are selectively wettable with only certain electrolytes, the excellent electrolyte solvent wettability of α-Al2O3 allows the coated alumina separator to function with different electrolytes. The coated α-Al2O3 separator has a much higher resistance to temperature effects than its polyolefin counterparts, retaining its dimensional integrity at temperatures as high as 200ºC. This eliminates the possibility of a short circuit during thermal runaway. Lithium ion batteries assembled as half-cells and full cells with coated α-Al2O3 separator exhibit electrochemical performance comparable with that of polyolefin separators at room temperature. However, the cells with coated alumina separator shows better cycling performance under extreme temperatures in the temperature range of -30°C to 60°C. Therefore, the coated α-Al2O3 separator is very promising for application in safe lithium-ion batteries.
ContributorsSharma, Gaurav (Author) / Lin, Jerry Y.S. (Thesis advisor) / Chan, Candace (Committee member) / Kannan, Arunachala (Committee member) / Arizona State University (Publisher)
Created2016
155778-Thumbnail Image.png
Description
Contamination of drinking water supplies from oxo-anion pollutants necessitates treatment prior to potable use. This dissertation aims to inform and improve light delivery (emission spectra, radiant intensity, reactor configuration) in order to enhance the photocatalytic reduction of hexavalent chromium (Cr(VI)) and nitrate, two common oxo-anions in drinking water, and photocatalytic

Contamination of drinking water supplies from oxo-anion pollutants necessitates treatment prior to potable use. This dissertation aims to inform and improve light delivery (emission spectra, radiant intensity, reactor configuration) in order to enhance the photocatalytic reduction of hexavalent chromium (Cr(VI)) and nitrate, two common oxo-anions in drinking water, and photocatalytic oxidation of two model organic pollutants (methylene blue, (MB) and para-chlorobenzoic acid (pCBA)). By varying the photon fluence dose, two metrics (contaminant quantum yield (Φ), and electrical energy per order (EEO)) were used to assess photocatalytic reactor performance. A detailed literature review and experimental results demonstrated how different irradiance sources with variable intensity and emission spectra synergistically enhanced contaminant removal by a coupled photolytic/photocatalytic reaction mechanism. Cr(VI) was photocatalytically reduced on TiO2 and formed Cr(OH)3(s) in a large-scale slurry reactor, but Cr(III) was then photolyzed and reformed Cr(VI). UV light also led to photo-aggregation of TiO2 which improved its recovery by the ceramic membrane within the reactor. For nitrate reduction, light source emission spectra and fluence dose delineate the preferred pathways as intermediates were reduced via wavelength-dependent mechanisms. HONO was identified as a key nitrate reduction intermediate, which was reduced photocatalytically (UV wavelengths) and/or readily photolyzed at 365nm, to yield nitrogen gases. Photocatalytic nitrate reduction efficiency was higher for discrete wavelength irradiation than polychromatic irradiation. Light delivery through aqueous media to the catalyst surface limits efficiency of slurry-based photocatalysts because absorption and scattering of light in nanomaterial slurries decreases effective photon transmittance and minimizes photolytic reactions. The use of optical fibers coupled to light emitting diodes (OF-LED) with immobilized catalyst demonstrated higher performance compared to slurry systems. OF-LED increased Φ for MB degradation by increasing direct photon delivery to the photocatalyst. Design of OF-LED reactors using bundled optical fibers demonstrated photocatalytic pCBA removal with high Φ and reduced EEO due to increased surface area and catalytic sites compared to single OF/LED couples. This work advances light delivery as well as the suspension and attachment of nanoparticles in photocatalytic water treatment for selective transformation of oxo-anions and organic compounds to innocuous species.
ContributorsTugaoen, Heather O'Neal (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Thesis advisor) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2017
155664-Thumbnail Image.png
Description
Lithium ion batteries prepared with a ceramic separator, have proven to possess improved safety, reliability as well as performance characteristics when compared to those with polymer separators which are prone to thermal runaway. Purely inorganic separators are highly brittle and expensive. The electrode-supported ceramic separator permits thinner separators which are

Lithium ion batteries prepared with a ceramic separator, have proven to possess improved safety, reliability as well as performance characteristics when compared to those with polymer separators which are prone to thermal runaway. Purely inorganic separators are highly brittle and expensive. The electrode-supported ceramic separator permits thinner separators which are a lot more flexible in comparison. In this work, it was observed that not any α-alumina could be used by the blade coating process to get a good quality separator on Li4Ti5O12 (LTO) electrode. In this work specifically, the effect of particle size of α-alumina, on processability of slurry was investigated. The effect of the particle size variations on quality of separator formation was also studied. Most importantly, the effect of alumina particle size and its distribution on the performance of LTO/Li half cells is examined in detail. Large-sized particles were found to severely limit the ability to fabricate such separators. The α-alumina slurry was coated onto electrode substrate, leading to possible interaction between α-alumina and LTO substrate. The interaction between submicron sized particles of α-alumina with the substrate electrode pores, was found to affect the performance and the stability of the separator. Utilizing a bimodal distribution of submicron sized particles with micron sized particles of α-alumina to prepare the separator, improved cell performance was observed. Yet only a specific ratio of bimodal distribution achieved good results both in terms of separator formation and resulting cell performance. The interaction of α-alumina and binder in the separator, and its effect on the performance of substrate electrode was investigated, to understand the need for bimodal distribution of powder forming the separator.
ContributorsKanhere, Narayan Vishnu (Author) / Lin, Jerry Y. S. (Thesis advisor) / Kannan, Arunachala (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2017
152356-Thumbnail Image.png
Description
Hexavalant chromium (Cr(VI)) poses an emerging concern in drinking water treatment with stricter regulations on the horizon. Photocatalytic reduction of Cr(VI) was investigated as an engineering scale option to remove hexavalent chromium from drinking or industrial waters via a UV/titanium dioxide (TiO2) process. Using an integrated UV lamp/ceramic membrane system

Hexavalant chromium (Cr(VI)) poses an emerging concern in drinking water treatment with stricter regulations on the horizon. Photocatalytic reduction of Cr(VI) was investigated as an engineering scale option to remove hexavalent chromium from drinking or industrial waters via a UV/titanium dioxide (TiO2) process. Using an integrated UV lamp/ceramic membrane system to recirculate TiO2, both hexavalent and total chromium levels were reduced through photocatalytic processes without additional chemicals. Cr(VI) removal increased as a function of higher energy input and TiO2 dosage, achieving above 90% removal for a 1g/L dose of TiO2. Surface analysis of effluent TiO2 confirmed the presence of chromium species.
ContributorsStancl, Heather O'Neal (Author) / Westerhoff, Paul K (Thesis advisor) / Chan, Candace (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013