Matching Items (72)
Filtering by

Clear all filters

151860-Thumbnail Image.png
Description
Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also estimated that nearly 40% of that cost could be avoided by finding alternative uses for drugs that have already been approved by the Food and Drug Administration (FDA). The research presented in this document describes the testing, identification, and mechanistic evaluation of novel methods for treating many human carcinomas using drugs previously approved by the FDA. A tissue culture plate-based screening of FDA approved drugs will identify compounds that can be used in combination with the protein TRAIL to induce apoptosis selectively in cancer cells. Identified leads will next be optimized using high-throughput microfluidic devices to determine the most effective treatment conditions. Finally, a rigorous mechanistic analysis will be conducted to understand how the FDA-approved drug mitoxantrone, sensitizes cancer cells to TRAIL-mediated apoptosis.
ContributorsTaylor, David (Author) / Rege, Kaushal (Thesis advisor) / Jayaraman, Arul (Committee member) / Nielsen, David (Committee member) / Kodibagkar, Vikram (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2013
152004-Thumbnail Image.png
Description
To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their

To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their microbiology and electrochemistry, much is still unknown about the mechanism of electron transfer to the anode. To this end, this thesis seeks to elucidate the complexities of electron transfer existing in Geobacter sulfurreducens biofilms by employing Electrochemical Impedance Spectroscopy (EIS) as the tool of choice. Experiments measuring EIS resistances as a function of growth were used to uncover the potential gradients that emerge in biofilms as they grow and become thicker. While a better understanding of this model ARB is sought, electrochemical characterization of a halophile, Geoalkalibacter subterraneus (Glk. subterraneus), revealed that this organism can function as an ARB and produce seemingly high current densities while consuming different organic substrates, including acetate, butyrate, and glycerol. The importance of identifying and studying novel ARB for broader MXC applications was stressed in this thesis as a potential avenue for tackling some of human energy problems.
ContributorsAjulo, Oluyomi (Author) / Torres, Cesar (Thesis advisor) / Nielsen, David (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Popat, Sudeep (Committee member) / Arizona State University (Publisher)
Created2013
151601-Thumbnail Image.png
Description
The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current

The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current automotive infrastructure. Additionally, butanol offers the same environmentally friendly effects as ethanol, but possess a 23% higher energy density. Clostridium acetobutylicum is an anaerobic bacterium that can ferment renewable biomass-derived sugars into butanol. However, this fermentation becomes limited by relatively low butanol concentrations (1.3% w/v), making this process uneconomical. To economically produce butanol, the in-situ product removal (ISPR) strategy is employed to the butanol fermentation. ISPR entails the removal of butanol as it is produced, effectively avoiding the toxicity limit and allowing for increased overall butanol production. This thesis explores the application of ISPR through integration of expanded-bed adsorption (EBA) with the C. acetobutylicum butanol fermentations. The goal is to enhance volumetric productivity and to develop a semi-continuous biofuel production process. The hydrophobic polymer resin adsorbent Dowex Optipore L-493 was characterized in cell-free studies to determine the impact of adsorbent mass and circulation rate on butanol loading capacity and removal rate. Additionally, the EBA column was optimized to use a superficial velocity of 9.5 cm/min and a resin fraction of 50 g/L. When EBA was applied to a fed-batch butanol fermentation performed under optimal operating conditions, a total of 25.5 g butanol was produced in 120 h, corresponding to an average yield on glucose of 18.6%. At this level, integration of EBA for in situ butanol recovered enabled the production of 33% more butanol than the control fermentation. These results are very promising for the production of butanol as a biofuel. Future work will entail the optimization of the fed-batch process for higher glucose utilization and development of a reliable butanol recovery system from the resin.
ContributorsWiehn, Michael (Author) / Nielsen, David (Thesis advisor) / Lin, Jerry (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2013
152551-Thumbnail Image.png
Description
The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health and environmental applications. For example, the analysis of CO2 levels in exhaled breath allows for the evaluation of systemic metabolism, perfusion, and ventilation, and provides the doctors and patients with a non-invasive and simple method

The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health and environmental applications. For example, the analysis of CO2 levels in exhaled breath allows for the evaluation of systemic metabolism, perfusion, and ventilation, and provides the doctors and patients with a non-invasive and simple method to predict the presence and severity of asthma, and Chronic Obstructive Pulmonary Disease (COPD). Similarly, the monitoring of CO2 levels in the atmosphere allows for assessment of indoor air quality (IAQ) as the indoor CO2 levels have been proved to be associated with increased prevalence of certain mucous membrane and respiratory sick building syndrome (SBS) symptoms. A pocket-sized CO2 analyzer has been developed for real-time analysis of breath CO2 and environmental CO2. This CO2 analyzer is designed to comprise two key components including a fluidic system for efficient gas sample delivery and a colorimetric detection unit integrated into the fluidic system. The CO2 levels in the gas samples are determined by a disposable colorimetric sensor chip. The sensor chip is a novel composite based sensor that has been optimized to provide fast and reversible response to CO2 over a wide concentration range, covering the needs of both environmental and health applications. The sensor is immune to the presence of various interfering gases in ambient or expired air. The performance of the sensor in real-time breath-by-breath analysis has also been validated by a commercial CO2 detector. Furthermore, a 3D model was created to simulate fluid dynamics of breath and chemical reactions for CO2 assessment to achieve overall understanding of the breath CO2 detection process and further optimization of the device.
ContributorsZhao, Di (Author) / Forzani, Erica S (Thesis advisor) / Lin, Jerry Ys (Committee member) / Torres, Cesar (Committee member) / Tsow, Tsing (Committee member) / Xian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2014
152504-Thumbnail Image.png
Description
Alzheimer's disease (AD) is the most common type of dementia, affecting one in nine people age 65 and older. One of the most important neuropathological characteristics of Alzheimer's disease is the aggregation and deposition of the protein beta-amyloid. Beta-amyloid is produced by proteolytic processing of the Amyloid Precursor Protein (APP).

Alzheimer's disease (AD) is the most common type of dementia, affecting one in nine people age 65 and older. One of the most important neuropathological characteristics of Alzheimer's disease is the aggregation and deposition of the protein beta-amyloid. Beta-amyloid is produced by proteolytic processing of the Amyloid Precursor Protein (APP). Production of beta-amyloid from APP is increased when cells are subject to stress since both APP and beta-secretase are upregulated by stress. An increased beta-amyloid level promotes aggregation of beta-amyloid into toxic species which cause an increase in reactive oxygen species (ROS) and a decrease in cell viability. Therefore reducing beta-amyloid generation is a promising method to control cell damage following stress. The goal of this thesis was to test the effect of inhibiting beta-amyloid production inside stressed AD cell model. Hydrogen peroxide was used as stressing agent. Two treatments were used to inhibit beta-amyloid production, including iBSec1, an scFv designed to block beta-secretase site of APP, and DIA10D, a bispecific tandem scFv engineered to cleave alpha-secretase site of APP and block beta-secretase site of APP. iBSec1 treatment was added extracellularly while DIA10D was stably expressed inside cell using PSECTAG vector. Increase in reactive oxygen species and decrease in cell viability were observed after addition of hydrogen peroxide to AD cell model. The increase in stress induced toxicity caused by addition of hydrogen peroxide was dramatically decreased by simultaneously treating the cells with iBSec1 or DIA10D to block the increase in beta-amyloid levels resulting from the upregulation of APP and beta-secretase.
ContributorsSuryadi, Vicky (Author) / Sierks, Michael (Thesis advisor) / Nielsen, David (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2014
152433-Thumbnail Image.png
Description
Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring

Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring amino acid phenylalanine, the precursor to styrene. Styrene production was accomplished using an E. coli phenylalanine overproducer, E. coli NST74, and over-expression of PAL2 from Arabidopsis thaliana and FDC1 from Saccharomyces cerevisiae. The styrene pathway was then extended by just one enzyme to either (S)-styrene oxide (StyAB from Pseudomonas putida S12) or (R)-1,2-phenylethanediol (NahAaAbAcAd from Pseudomonas sp. NCIB 9816-4) which are both used in pharmaceutical production. Overall, these pathways suffered from limitations due to product toxicity as well as limited precursor availability. In an effort to overcome the toxicity threshold, the styrene pathway was transferred to a yeast host with a higher toxicity limit. First, Saccharomyces cerevisiae BY4741 was engineered to overproduce phenylalanine. Next, PAL2 (the only enzyme needed to complete the styrene pathway) was then expressed in the BY4741 phenylalanine overproducer. Further strain improvements included the deletion of the phenylpyruvate decarboxylase (ARO10) and expression of a feedback-resistant choristmate mutase (ARO4K229L). These works have successfully demonstrated the possibility of utilizing microorganisms as cellular factories for the production styrene, (S)-styrene oxide, and (R)-1,2-phenylethanediol.
ContributorsMcKenna, Rebekah (Author) / Nielsen, David R (Thesis advisor) / Torres, Cesar (Committee member) / Caplan, Michael (Committee member) / Jarboe, Laura (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2014
152814-Thumbnail Image.png
Description
Many therapeutics administered for some of the most devastating illnesses can be toxic and result in unwanted side effects. Recent developments have been made in an alternative treatment method, called gene therapy. Gene therapy has potential to rectify the genetic defects that cause a broad range of diseases. Many diseases,

Many therapeutics administered for some of the most devastating illnesses can be toxic and result in unwanted side effects. Recent developments have been made in an alternative treatment method, called gene therapy. Gene therapy has potential to rectify the genetic defects that cause a broad range of diseases. Many diseases, such as cancer, cystic fibrosis, and acquired immunodeficiency (AIDS) already have gene therapy protocols that are currently in clinical trials. Finding a non-toxic and efficient gene transfer method has been a challenge. Viral vectors are effective at transgene delivery however potential for insertion mutagenesis and activation of immune responses raises concern. For this reason, non-viral vectors have been investigated as a safer alternative to viral-mediated gene delivery. Non-viral vectors are also easy to prepare and scalable, but are limited by low transgene delivery efficacies and high cytotoxicity at effective therapeutic dosages. Thus, there is a need for a non-toxic non-viral vector with high transgene efficacies. In addition to the hurdles in finding a material for gene delivery, large-scale production of pharmaceutical grade DNA for gene therapy is needed. Current methods can be labor intensive, time consuming, and use toxic chemicals. For this reason, an efficient and safe method to collect DNA is needed. One material that is currently being explored is the hydrogel. Hydrogels are a useful subclass of biomaterials, with a wide variety of applications. This class of biomaterials can carry up to a thousand times their weight in water, and are biocompatible. At smaller dimensions, referred to as micro- and nanogels, they are very useful for many biomedical applications because of their size and ability to swell. Based on a previously synthesized hydrogel, and due to the advantages of smaller dimension in biomedical applications, we have synthesized aminoglycoside antibiotic based nanogels and microgels. Microgels and nanogels were synthesized following a ring opening polymerization of epoxide-containing crosslinkers and polyamine-containing monomers. The nanogels were screened for their cytocompatibilities and transfection efficacies, and were compared to polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Nanogels demonstrated minimal to no toxicity to the cell line used in the study even at high concentrations. Due to the emerging need for large-scale production of DNA, microgels were evaluated for their binding capacity to plasmid DNA. Future work with the aminoglycoside antibiotic-based nanogels and microgels developed in this study will involve optimization of nanogels and microgels to facilitate in better transgene delivery and plasmid DNA binding, respectively.
ContributorsMallik, Amrita Amy (Author) / Rege, Kaushal (Thesis advisor) / Dai, Lennore (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
152802-Thumbnail Image.png
Description
A new photocatalytic material was synthesized to investigate its performance for the photoreduction of carbon dioxide (CO2) in the presence of water vapor (H2O) to valuable products such as carbon monoxide (CO) and methane (CH4). The performance was studied using a gas chromatograph (GC) with a flame ionization detector (FID)

A new photocatalytic material was synthesized to investigate its performance for the photoreduction of carbon dioxide (CO2) in the presence of water vapor (H2O) to valuable products such as carbon monoxide (CO) and methane (CH4). The performance was studied using a gas chromatograph (GC) with a flame ionization detector (FID) and a thermal conductivity detector (TCD). The new photocatalytic material was an ionic liquid functionalized reduced graphite oxide (IL-RGO (high conductive surface))-TiO2 (photocatalyst) nanocomposite. Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV-vis absorption spectroscopy techniques were employed to characterize the new catalyst. In the series of experiments performed, the nanocomposite material was confined in a UV-quartz batch reactor, exposed to CO2 and H2O and illuminated by UV light. The primary product formed was CO with a maximum production ranging from 0.18-1.02 µmol(gcatalyst-hour)-1 for TiO2 and 0.41-1.41 µmol(gcatalyst-hour)-1 for IL-RGO-TiO2. A trace amount of CH4 was also formed with its maximum ranging from 0.009-0.01 µmol(gcatalyst-hour)-1 for TiO2 and 0.01-0.04 µmol(gcatalyst-hour)-1 for IL-RGO-TiO2. A series of background experiments were conducted and results showed that; (a) the use of a ionic liquid functionalized reduced graphite oxide -TiO2 produced more products as compared to commercial TiO2, (b) the addition of methanol as a hole scavenger boosted the production of CO but not CH4, (c) a higher and lower reduction time of IL-RGO as compared to the usual 24 hours of reduction presented basically the same production of CO and CH4, (d) the positive effect of having an ionic liquid was demonstrated by the double production of CO obtained for IL-RGO-TiO2 as compared to RGO-TiO2 and (e) a change in the amount of IL-RGO in the IL-RGO-TiO2 represented a small difference in the CO production but not in the CH4 production. This work ultimately demonstrated the huge potential of the utility of a UV-responsive ionic liquid functionalized reduced graphite oxide-TiO2 nano-composite for the reduction of CO2 in the presence of H2O for the production of fuels.
ContributorsCastañeda Flores, Alejandro (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2014
152838-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread

Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread application. To overcome this, researchers have recently created probabilistic underspecification as an LCA streamlining method, which uses a structured data classification system to enable an LCA modeler to specify materials and processes in a less precise manner. This study presents a statistical procedure to understand when streamlined LCA methods can be used, and what their impact on overall model uncertainty is. Petrochemicals and polymer product systems were chosen to examine the impacts of underspecification and mis-specification applied to LCA modeling. Ecoinvent database, extracted using GaBi software, was used for data pertaining to generic crude oil refining and polymer manufacturing modules. By assessing the variation in LCA results arising out of streamlined materials classification, the developed statistics estimate the amount of overall error incurred by underspecifying and mis-specifying material impact data in streamlined LCA. To test the impact of underspecification and mis-specification at the level of a product footprint, case studies of HDPE containers and aerosol air fresheners were conducted. Results indicate that the variation in LCA results decreases as the specificity of materials increases. For the product systems examined, results show that most of the variability in impact assessment is due to the differences in the regions from which the environmental impact datasets were collected; the lower levels of categorization of materials have relatively smaller influence on the variance. Analyses further signify that only certain environmental impact categories viz. global warming potential, freshwater eutrophication, freshwater ecotoxicity, human toxicity and terrestrial ecotoxicity are affected by geographic variations. Outcomes for the case studies point out that the error in the estimation of global warming potential increases as the specificity of a component of the product decreases. Fossil depletion impact estimates remain relatively robust to underspecification. Further, the results of LCA are much more sensitive to underspecification of materials and processes than mis-specification.
ContributorsMurali, Ashwin Krishna (Author) / Dooley, Kevin (Thesis advisor) / Dai, Lenore (Thesis advisor) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
152890-Thumbnail Image.png
Description
Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A number of exceptional CO2 sorbents materials have been prepared including metal organic frameworks, zeolites, and carbon based materials. One particular

Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A number of exceptional CO2 sorbents materials have been prepared including metal organic frameworks, zeolites, and carbon based materials. One particular group of capable materials are amine based solid sorbents that has shown to possess high adsorption capacities and favorable adsorption kinetics. A key variable in the synthesis of an amine based sorbent is the support which acts as the platform for the amine modification. Aerogels, due to their high porosities and surface areas, appear to be a promising support for an amine modified CO2 sorbent. Therefore, in order to develop a commercially viable CO2 sorbent, particulate aerogels manufactured by Cabot Corporation through an economical and proprietary ambient drying process were modified with amines using a variety of functionalization methods. Two methods of physical impregnation of the amino polymer TEPA were performed in order to observe the performance as well as understand the effects of how the TEPA distribution is affected by the method of introduction. Both samples showed excellent adsorption capacities but poor cyclic stability for lack of any covalent attachment. Furthermore the method of TEPA impregnation seems to be independent on how the polymer will be distributed in the pore space of aerogel. The last two methods utilized involved covalently attaching amino silanes to the surface silanols of the aerogel. One method was performed in the liquid phase under anhydrous and hydrous conditions. The materials developed through the hydrous method have much greater adsorption capacities relative to the anhydrous sample as a result of the greater amine content present in the hydrous sample. Water is another source of silylation where additional silanes can attach and polymerize. These samples also possessed stable cyclic stability after 100 adsorption/regeneration cycles. The other method of grafting was performed in the gas phase through ALD. These samples possessed exceptionally high amine efficiencies and levels of N content without damaging the microstructure of the aerogel in contrast to the liquid phase grafted sorbents.
ContributorsLinneen, Nick (Author) / Lin, Jerry (Thesis advisor) / Pfeffer, Robert (Thesis advisor) / Lind, Mary (Committee member) / Rege, Kaushal (Committee member) / Nielsen, David (Committee member) / Anderson, James (Committee member) / Arizona State University (Publisher)
Created2014