Matching Items (15)
Filtering by

Clear all filters

156977-Thumbnail Image.png
Description
Excessive weight gain during pregnancy is a significant public health concern and has been the recent focus of novel, control systems-based interventions. Healthy Mom Zone (HMZ) is an intervention study that aims to develop and validate an individually tailored and intensively adaptive intervention to manage weight gain for overweight or

Excessive weight gain during pregnancy is a significant public health concern and has been the recent focus of novel, control systems-based interventions. Healthy Mom Zone (HMZ) is an intervention study that aims to develop and validate an individually tailored and intensively adaptive intervention to manage weight gain for overweight or obese pregnant women using control engineering approaches. Motivated by the needs of the HMZ, this dissertation presents how to use system identification and state estimation techniques to assist in dynamical systems modeling and further enhance the performance of the closed-loop control system for interventions.

Underreporting of energy intake (EI) has been found to be an important consideration that interferes with accurate weight control assessment and the effective use of energy balance (EB) models in an intervention setting. To better understand underreporting, a variety of estimation approaches are developed; these include back-calculating energy intake from a closed-form of the EB model, a Kalman-filter based algorithm for recursive estimation from randomly intermittent measurements in real time, and two semi-physical identification approaches that can parameterize the extent of systematic underreporting with global/local modeling techniques. Each approach is analyzed with intervention participant data and demonstrates potential of promoting the success of weight control.

In addition, substantial efforts have been devoted to develop participant-validated models and incorporate into the Hybrid Model Predictive Control (HMPC) framework for closed-loop interventions. System identification analyses from Phase I led to modifications of the measurement protocols for Phase II, from which longer and more informative data sets were collected. Participant-validated models obtained from Phase II data significantly increase predictive ability for individual behaviors and provide reliable open-loop dynamic information for HMPC implementation. The HMPC algorithm that assigns optimized dosages in response to participant real time intervention outcomes relies on a Mixed Logical Dynamical framework which can address the categorical nature of dosage components, and translates sequential decision rules and other clinical considerations into mixed-integer linear constraints. The performance of the HMPC decision algorithm was tested with participant-validated models, with the results indicating that HMPC is superior to "IF-THEN" decision rules.
ContributorsGuo, Penghong (Author) / Rivera, Daniel E. (Thesis advisor) / Peet, Matthew M. (Committee member) / Forzani, Erica (Committee member) / Deng, Shuguang (Committee member) / Pavlic, Theodore P. (Committee member) / Arizona State University (Publisher)
Created2018
155661-Thumbnail Image.png
Description
The project aims at utilization of hydrothermal liquefaction (HTL) byproducts like biochar to grow microalgae. HTL is a promising method to convert wet algal biomasses into biofuels. The initial microalgae liquefaction at a temperature of 300 °C for 30 minute, converted 31.22 % of the Galdieria sulphuraria and 41.00 %

The project aims at utilization of hydrothermal liquefaction (HTL) byproducts like biochar to grow microalgae. HTL is a promising method to convert wet algal biomasses into biofuels. The initial microalgae liquefaction at a temperature of 300 °C for 30 minute, converted 31.22 % of the Galdieria sulphuraria and 41.00 % of the Kirchneriella cornutum into biocrude. Upon changing the reactor from a 100 ml to a 250 ml reactor, the yield in biocrude increased to 31.48 % for G. sulphuraria and dropped to 38.05 % for K. cornutum. Further, energy recoveries based on calorific values of HTL products were seen to drop by about 5 % of the 100 ml calculated values in the larger reactor.

Biochar from HTL of G. sulphuraria at 300 °C showed 15.98 and 5.27 % of phosphorous and nitrogen, respectively. HTL products from the biomass were analyzed for major elements through ICP-OES and CHNS/O. N and P are macronutrients that can be utilized in growing microalgae. This could reduce the operational demands in growing algae like, phosphorous mined to meet annual national demand for aviation fuel. Acidic leaching of these elements as phosphates and ammoniacal nitrogen was studied. Improved leaching of 49.49 % phosphorous and 95.71 % nitrogen was observed at 40 °C and pH 2.5 over a period of 7 days into the growth media. These conditions being ideal for growth of G. sulphuraria, leaching can be done in-situ to reduce overhead cost.

Growth potential of G. sulphuraria in leached media was compared to a standard cyanidium media produced from inorganic chemicals. Initial inhibition studies were done in the leached media at 40 °C and 2-3 vol. % CO2 to observe a positive growth rate of 0.273 g L-1 day-1. Further, growth was compared to standard media with similar composition in a 96 well plate 50 μL microplate assay for 5 days. The growth rates in both media were comparable. Additionally, growth was confirmed in a 240 times larger tubular reactor in a Tissue Culture Roller drum apparatus. A better growth was observed in the leached cyanidium media as compared to the standard variant.
ContributorsMathew, Melvin (Author) / Deng, Shuguang (Thesis advisor) / Lammers, Peter J. (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2017
187404-Thumbnail Image.png
Description
This study presents an evaluation of the predicted flow behavior and the minimum outlet diameter in a computationally simulated hopper. The flow pattern in hoppers was simulated to test three size fractions, three moisture levels of microcrystalline cellulose (MCC), and two hopper wall angles in Multiphase Flow with Interphase eXchanges

This study presents an evaluation of the predicted flow behavior and the minimum outlet diameter in a computationally simulated hopper. The flow pattern in hoppers was simulated to test three size fractions, three moisture levels of microcrystalline cellulose (MCC), and two hopper wall angles in Multiphase Flow with Interphase eXchanges (MFiX). Predictions from MFiX were then compared to current literature. As expected, the smaller size fractions with lower water content were closer to ideal funnel flow than their larger counterparts. The predicted minimum outlet diameter in simulations showed good agreement with close to ideal flowability. These findings illustrate the connection between lab flowability experiments and computational simulations. Lastly, three fluidized bed simulations were also created in MFiX with zeolite 13X to analyze the pressure and velocity within the bed. The application of flowability simulations can improve the transport of solids in processing equipment used during the production of powders.
ContributorsBuchanan, Lidija (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
187602-Thumbnail Image.png
Description
Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate

Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate reduction to inform improved remediation technologies can be done using Density functional theory (DFT) calculations. The adsorption of selenate, selenite, and arsenate was investigated on the alumina and hematite to inform sorbent design strategies. Adsorption energies were calculated as a function of surface structure, composition, binding motif, and pH within a hybrid implicit-explicit solvation strategy. Correlations between surface property descriptors including water network structure, cationic species identity, and facet and the adsorption energies of the ions show that the surface water network controls the adsorption energy more than any other, including the cationic species of the metal-oxide. Additionally, to achieve selectivity for selenate over sulphate, differences in their electronic structure must be exploited, for example by the reduction of selenate to selenite by Ti3+ cations. Thermochemical or electrochemical reduction pathways to convert NO3- to N2 or NH3, which are benign or value-added products, respectively are examined over single-atom electrocatalysts (SAC) in Cu. The activity and selectivity for nitrate reduction are compared with the competitive hydrogen evolution reaction (HER). Cu suppresses HER but produces toxic NO2- because of a high activation barrier for cleaving the second N-O bond. SACs provide secondary sites for reaction and break traditional linear scaling relationships. Ru-SACs selectively produce NH3 because N-O bond scission is facile, and the resulting N remains isolated on SAC sites; reacting with H+ from solvating H2O to form ammonia. Conversely, Pd-SAC forms N2 because the reduced N* atoms migrate to the Cu surface, which has a low H availability, allowing N atoms to combine to N2. This relation between N* binding preference and reduction product is demonstrated across an array of SAC elements. Hence, the solvation effects on the surface critically alter the activity of adsorption and catalysis and the removal of toxic pollutants can be improved by altering the surface water network.
ContributorsGupta, Srishti (Author) / Muhich, Christopher L (Thesis advisor) / Singh, Arunima (Committee member) / Emady, Heather (Committee member) / Westerhoff, Paul (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
187299-Thumbnail Image.png
Description
Adsorption is fundamentally known to be a non-isothermal process; in which temperature increase is largely significant, causing fairly appreciable impacts on the processkinetics. For porous adsorbent particles like metal organic frameworks (MOFs), silica gel, and zeolite, the resultant relative heat generated is partly distributed within the particle, and the rest is transferred

Adsorption is fundamentally known to be a non-isothermal process; in which temperature increase is largely significant, causing fairly appreciable impacts on the processkinetics. For porous adsorbent particles like metal organic frameworks (MOFs), silica gel, and zeolite, the resultant relative heat generated is partly distributed within the particle, and the rest is transferred to the surrounding ambient fluid (air). For large step changes in adsorbed phase concentration and fast adsorption rates, especially, the isothermality of adsorption (as in some studies) is an inadequate assumption and inspires rather erroneous diffusivities of porous adsorbents. Isothermal models, in consequence, are insufficient for studying adsorption in porous adsorbents. Non-isothermal models can satisfactorily and exhaustively describe adsorption in porous adsorbents. However, in many of the analyses done using the models, the thermal conductivity of the adsorbent is assumed to be infinite; thus, particle temperature is taken to be fairly uniform during the process—a trend not observed for carbon dioxide (CO2) adsorption on MOFs. A new and detailed analysis of CO2 adsorption in a single microporous MOF-5 particle, assuming a finite effective thermal conductivity along with comprehensive parametric studies for the models, is presented herein. A significant average temperature increase of 5K was calculated using the new model, compared to the 0.7K obtained using the Stremming model. A corresponding increase in diffusivity from 8.17 x 10-13 to 1.72 x 10-11 m2/s was observed, indicating the limitations of both isothermal models and models that assume constant diffusivity.
ContributorsNkuutu, John (Author) / Lin, Jerry (Thesis advisor) / Emady, Heather (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
171622-Thumbnail Image.png
Description
The objective of this research is to create a python program that can describe the adsorption breakthrough performance of direct air capture of CO2 by zeolite and other adsorbents. The purpose of creating this open-source code is because many commercial simulation software for adsorption process simulation can be extremely expensive

The objective of this research is to create a python program that can describe the adsorption breakthrough performance of direct air capture of CO2 by zeolite and other adsorbents. The purpose of creating this open-source code is because many commercial simulation software for adsorption process simulation can be extremely expensive and typically are yearly subscriptions which can be a costly expenditure for academic research labs and chemical engineers working on adsorption processes development and design. The simulation models are generated by solving the governing mass and energy transfer equations and validating the models with experimental data. The typical inputs for the adsorption process simulation include adsorption equilibrium of both CO2 and N2 on selected adsorbents, mass transfer coefficients information, adsorbent bed length and void fraction, and other physical and chemical properties of the adsorbent being tested. The outputs of the simulation package are the dimensionless CO2 concentration profile as a function of dimensionless time, which is usually used for evaluating the adsorbent performance for CO2 capture. The models created were compared to the commercial package gPROMs and they performed extremely well. The main variation between the models created and gPROMs was that the models tended to underpredict the breakpoint of experimental data and gPROMs tended to overpredict. This M.S. research is part of the major research efforts for developing an open-source adsorption process simulation package for carbon capture and conversion in Prof. Deng’s group at ASU. The ultimate goal of this research program is to reduce carbon emissions and develop a sustainable solution for a future carbon-free economy.
ContributorsBonelli, Xavier Berlage (Author) / Deng, Shuguang (Thesis advisor) / Andino, Jean (Committee member) / Seo, Don (Committee member) / Arizona State University (Publisher)
Created2022
171908-Thumbnail Image.png
Description
This thesis presents the development of idiographic models (i.e., single subject or N = 1) of walking behavior as a means of facilitating the design of control systems to optimize mobile health (mHealth) interventions for sedentary adults. Model-on-Demand (MoD), an adaptive modeling technique, is demonstrated as an ideal method for

This thesis presents the development of idiographic models (i.e., single subject or N = 1) of walking behavior as a means of facilitating the design of control systems to optimize mobile health (mHealth) interventions for sedentary adults. Model-on-Demand (MoD), an adaptive modeling technique, is demonstrated as an ideal method for modeling nonlinear systems with noise on a simulated continuously stirred tank reactor (CSTR). Comparing MoD to AutoRegressive with eXogenous input (ARX) estimation, MoD outperforms ARX in terms of addressing both nonlinearity and noise in the CSTR system. With the CSTR system as an initial proof of concept, MoD is then used to model individual walking behavior using intervention data from participants of HeartSteps, a walking intervention that studies the effect of within-day suggestions. Given the number of possible measured features from which to design the MoD models, as well as the number of model parameters that influence the model’s performance, optimizing MoD models through exhaustive search is infeasible. Consequently, a discrete implementation of simultaneous perturbation stochastic approximation (DSPSA) is shown to be an efficient algorithm to find optimal models of walking behavior. Combining MoD with DSPSA, models of walking behavior were developed using participant data from Just Walk, a day-to-day walking intervention; MoD outperformed ARX models on both estimation and validation data. DSPSA was also applied to ARX modeling, highlighting the use of DSPSA to not only search over model parameters and features but also data partitioning, as DSPSA was used to evaluate models under various combinations of estimation and validation data from a single participant’s walking data. Results of this thesis point to ARX with DSPSA as a routine means for dynamic model estimation in large-scale behavioral intervention settings.
ContributorsKha, Rachael T (Author) / Rivera, Daniel E (Thesis advisor) / Deng, Shuguang (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
157681-Thumbnail Image.png
Description
Zwitterionic polymers, due to their supurior capability of electrostatically induced hydration, have been considered as effective functionalities to alleviate bio-fouling of reverse osmosis (RO) membranes. Bulk modification of polysulfone-based matrices to improve hydrophilicity, on the other hand, is favored due to the high membrane performance, processibility, and intrinsic chlorine resistance.

Zwitterionic polymers, due to their supurior capability of electrostatically induced hydration, have been considered as effective functionalities to alleviate bio-fouling of reverse osmosis (RO) membranes. Bulk modification of polysulfone-based matrices to improve hydrophilicity, on the other hand, is favored due to the high membrane performance, processibility, and intrinsic chlorine resistance. Here a novel synthetic method was demonstrated to prepare zwitterionic poly(arylene ether sulfone) (PAES) copolymers, which was blended with native polysulfone (PSf) to fabricate free-standing asymmetric membranes via non-solvent induced phase separation process. Both the porosity of the support layer and surface hydrophilicity increased drastically due to the incorporation of zwitterion functionalities in the rigid polysulfone matrix. The water permeance and antifouling ability of the blend membranes were both remarkably improved to 2.5 Lm−2 h−1 bar−1 and 94% of flux recovery ratio, respectively, while salt rejection remained at a high level (98%) even under the high exposure to chlorine (8,000 ppm•h). Besides the preliminary blended membrane design, for the future membrane property enhancement, this dissertation also focused on polymer structure optimizations via elucidating the fundamentals from two perspectives: 1). Synthetic reaction kinetics and mechanisms on polycondensation of PAES. Interestingly, in combination of experiments and the computational calculations by density functional theory (DFT) methods in this work, only the aryl chlorides (ArCl) monomer follows the classical second-order reaction kinetics of aromatic nucleophilic substitution (SNAr) mechanism, while the kinetics of the aryl fluorides (ArF) reaction fit a third-order rate law. The third order reaction behavior of the ArF monomer is attributed to the activation of the carbon-fluorine bond by two potassium cations (at least one bounded to phenolate), which associate as a strong three-body complex. This complex acts as the predominant reactant during the attack by the nucleophile. 2). Optimized copolymer structures were developed for controlled high molecular weight (Mw ~ 65 kDa) and zwitterionic charge content (0~100 mol%), via off-set stoichiometry during polycondensations, following with thiol-ene click reaction and ring-opening of sultone to introduce the sulfobetaine functional groups. The structure-property-morphology relationships were elucidated for better understanding atomic-level features in the charged polymers for future high-performance desalination applications.
ContributorsYang, Yi, Ph.D (Author) / Green, Matthew D (Thesis advisor) / Lin, Jerry Y.S. (Committee member) / Lind, Marylaura (Committee member) / Perreault, Francois (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2019
157933-Thumbnail Image.png
Description
This thesis investigated the effects of differing diameters and varying moisture content on the flowability properties of granular glass beads through use of a Freeman FT4 Powder Rheometer. These parameters were tested in order to construct an empirical model to predict flowability properties of glass beads at differing size ranges

This thesis investigated the effects of differing diameters and varying moisture content on the flowability properties of granular glass beads through use of a Freeman FT4 Powder Rheometer. These parameters were tested in order to construct an empirical model to predict flowability properties of glass beads at differing size ranges and moisture contents. The final empirical model outputted an average error of 8.73% across all tested diameters and moisture ranges.

Mohr's circles were constructed from experimentally-obtained shear stress values to quantitatively describe flowability of tested materials in terms of a flow function parameter. A high flow function value (>10) was indicative of a good flow.

By testing 120-180 µm, 120-350 µm, 180-250 µm, 250-350 µm, 430-600 µm, and 600-850 µm glass bead diameter ranges, an increase in size was seen to result in higher flow function values. The limitations of testing using the FT4 became apparent as inconsistent flow function values were obtained at 0% moisture with size ranges above 120-180 µm, or at flow function values of >21. Bead sizes larger than 430 µm showed significant standard deviation over all tested trials--when excluding size ranges above that value, the empirical model showed an average error of only 6.45%.

Wet material testing occurred at all tested glass bead size ranges using a deionized water content of 0%, 1%, 5%, 15%, and 20% by weight. The results of such testing showed a decrease in the resulting flow function parameter as more water content was added. However, this trend changed as 20% moisture content was achieved; the wet material became supersaturated, and an increase in flow function values was observed. The empirical model constructed, therefore, neglected the 20% moisture content regime.
ContributorsKleppe, Cameron (Author) / Emady, Heather (Thesis advisor) / Marvi, Hamidreza (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2019
158878-Thumbnail Image.png
Description
The continued reliance on fossil fuel for energy resources has proven to be unsustainable, leading to depletion of world reserves and emission of greenhouse gases during their combustion. Therefore, research initiatives to develop potentially carbon-neutral biofuels were given the highest importance. Hydrothermal liquefaction (HTL, a thermochemical conversion process) of microalgae

The continued reliance on fossil fuel for energy resources has proven to be unsustainable, leading to depletion of world reserves and emission of greenhouse gases during their combustion. Therefore, research initiatives to develop potentially carbon-neutral biofuels were given the highest importance. Hydrothermal liquefaction (HTL, a thermochemical conversion process) of microalgae is recognized as a favorable and efficient technique to produce liquid biofuels from wet feedstocks. In this work, three different microalgae (Kirchneriella sp., Galdieria sulphuraria, Micractinium sp.) grown and harvested at Arizona State University were hydrothermally liquefied to optimize their process conditions under different temperatures (200-375 °C), residence times (15-60 min), solids loadings (10-20 wt.%), and process pressures (9-24 MPa). A one-factor-at-a-time approach was employed, and comprehensive experiments were conducted at 10 % solid loadings and a residence time of 30 min. Co-liquefaction of Salicornia bigelovii Torr. (SL), Swine manure (SM) with Cyanidioschyzon merolae (CM) was tested for the presence of synergy. A positive synergistic effect was observed during the co-liquefaction of biomasses, where the experimental yield (32.95 wt.%) of biocrude oil was higher than the expected value (29.23 wt.% ). Co-liquefaction also led to an increase in the energy content of the co-liquefied biocrude oil and a higher energy recovery rate ( 88.55 %). The HTL biocrude was measured for energy content, elemental, and chemical composition using GC-MS. HTL aqueous phase was analyzed for potential co-products by spectrophotometric techniques and is rich in soluble carbohydrates, dissolved ammoniacal nitrogen, and phosphates. HTL biochar was studied for its nutrient content (nitrogen and phosphorous) and viability of its recovery to cultivate algae without any inhibition using the nutrient leaching. HTL biochar was also studied to produce hydrogen via pyrolysis using a membrane reactor at 500 °C, 1 atm, for 24 h to produce 5.93 wt.% gas. The gaseous product contains 45.7 mol % H2, 44.05 ml % CH4, and 10.25 mol % of CO. The versatile applications of HTL biochar were proposed from a detailed physicochemical characterization. The metal impurities in the algae, bio-oil, and biochar were quantified by ICP-OES where algae and biochar contain a large proportion of phosphorous and magnesium.
ContributorsDandamudi, Kodanda Phani Raj (Author) / Deng, Shuguang (Thesis advisor) / Lammers, Peter J. (Committee member) / Fini, Elham H. (Committee member) / Lind Thomas, MaryLaura (Committee member) / Varman, Arul M. (Committee member) / Arizona State University (Publisher)
Created2020