Matching Items (1)
Filtering by

Clear all filters

136885-Thumbnail Image.png
Description
Lithium-ion batteries are one of the most widely used energy storage solutions today. As renewable energy sources proliferate to meet growth in worldwide energy consumption, it is important that lithium-ion batteries be improved to help capture this energy for use when the demand arises. One way to boost the performance

Lithium-ion batteries are one of the most widely used energy storage solutions today. As renewable energy sources proliferate to meet growth in worldwide energy consumption, it is important that lithium-ion batteries be improved to help capture this energy for use when the demand arises. One way to boost the performance of lithium-ion batteries is to replace the electrode active materials with materials of higher specific capacity. Silicon is one material that has been widely touted as a potential replacement for the graphite used in commercial anodes with a theoretical capacity of 3500 mAh/g as opposed to graphite's 372 mAh/g. However, bulk silicon is known to pulverize after experiencing large strains during lithiation. Here, silicon clathrates are investigated as a potential structure for accommodation of these strains. Silicon clathrates consist of covalently bonded silicon host cages surrounding a guest alkali or alkaline earth metal ion. Previous work has looked at silicon clathrates for their superconducting and thermoelectric properties. In this study, electrochemical properties of type I and II silicon clathrates with sodium guest ions (NaxSi46 and NaxSi136) and type I silicon clathrates with copper framework substitution and barium guest ions (Ba8CuxSi46-x) are examined. Sodium clathrates showed very high capacities during initial lithiation (>2500 mAh/g), but rapidly lost capacity thereafter. X-ray diffraction after lithiation showed conversion of the clathrate phase to lithium silicide and then to amorphous silicon after delithiation, indicating destruction of the clathrate structure as a possible explanation for the rapid capacity fade. Ba8CuxSi46-x clathrates were found to have their structures completely intact after 50 cycles. However, they had very low reversible capacities (<100 mAh/g) and potentially might not be electrochemically active. Further work is needed to better understand exactly how lithium is inserted into clathrates and if copper impurities detected during wavelength-dispersive X-ray spectroscopy could be inhibiting lithium transport into the clathrates.
ContributorsWagner, Nicholas Adam (Author) / Chan, Candace (Thesis director) / Sieradzki, Karl (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2014-05