Matching Items (10)
Filtering by

Clear all filters

136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137315-Thumbnail Image.png
Description
In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk electrodes to find the optimal binding frequency of estradiol and its respective antibody, anti-17β-estradiol, which was determined to be 37.46Hz.

In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk electrodes to find the optimal binding frequency of estradiol and its respective antibody, anti-17β-estradiol, which was determined to be 37.46Hz. At this frequency a logarithmic relationship between concentration and impedance (Z/ohm) was established creating a concentration calibration curve with a slope of 211 ohm/ln(pg mL-1), an R-squared value of 0.986 and a lower limit of detection of 742 fg mL-1. The specificity and cross-reactivity of the antibody with other hormones was tested through interferent and non-target experiments. Signal-to-noise ratio analysis verified that anti-17β-estradiol exhibited minimal chemical reactions with other hormones (SNR< 3) in non-target experiments. Additionally, there were minimal changes in the amount of signal collected during interferent testing, with albumin and follicle stimulating hormone having SNR values greater than 3. These results, along with the unique frequency response of the antibody-target binding reaction, allow for the possibility of using anti-17β-estradiol and β-estradiol for detecting multiple fertility biomarkers on a single sensor.
ContributorsSmith, Victoria Ann (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137263-Thumbnail Image.png
Description
Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.
ContributorsEusebio, Francis Ang (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137088-Thumbnail Image.png
Description
Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom

Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom made stencils for a 4x1 array of 3-electrode electrochemical cells. Cyclic voltammetry was performed to find the electrical potential corresponding to the greatest current response and the experiments were conducted using amperometric current-time mode (AMP*i-t). The physical limitations of SPEs as well as the detection limitations of the target, such as pH and temperature were tested. A concentration gradient of the target was fitted with a linear curve (R2 0.99), and a lower limit of detection of 14.5 μM. It was also found that both pH and temperature affect the current produced by acetaminophen at a fixed concentration, and that the sensors can detect target in a continuous flow. A flow apparatus consisting of an inlet and effluent pipe served as the flow model into which a rolled up flexible electrode array was inserted. The broader goal of this research is to develop a highly sensitive electrode array on flexible substrates which can detect multiple targets simultaneously. Acetaminophen was chosen due to its electro-active properties and its presence in most public water lines in the United States.
ContributorsMaxwell, Stephanie Ann (Author) / LaBelle, Jeffrey (Thesis director) / Allee, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137769-Thumbnail Image.png
Description
Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in

Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in Amp i-t, a quantifiable current can be read and the force applied can be calculated. Two common electrochemical techniques in which current is measured, cyclic voltammetry(CV) and amperometric i-t(Amp i-t), were used. A compressible sensor capable of transducing a force and acquiring feedback was created.
ContributorsFeldman, Austin Marc (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137782-Thumbnail Image.png
Description
Development of a rapid and label-free Electrochemical Impedance Spectroscopy (EIS) biosensor for Cardiovascular Disease (CVD) detection based on Inerluekin-18 (IL-18) sensitivity was proposed to fill the technology gap between rapid and portable CVD point-of-care diagnosis. IL-18 was chosen for this CVD biosensor due to its ability to detect plaque vulnerability

Development of a rapid and label-free Electrochemical Impedance Spectroscopy (EIS) biosensor for Cardiovascular Disease (CVD) detection based on Inerluekin-18 (IL-18) sensitivity was proposed to fill the technology gap between rapid and portable CVD point-of-care diagnosis. IL-18 was chosen for this CVD biosensor due to its ability to detect plaque vulnerability of the heart. Custom (hand) made sensors, which utilized a three electrode configuration with a gold disk working electrode, were created to run EIS using both IL-18 and anti-IL-18 molecules in both purified and blood solutions. The EIS results for IL-18 indicated the optimal detection frequency to be 371Hz. Blood interaction on the working electrode increased the dynamic range of impedance values for the biosensor. Future work includes Developing and testing prototypes of the biosensor along with determining if a Nafion based coating on the working electrode will reduce the dynamic range of impedance values caused by blood interference.
ContributorsJha, Amit (Author) / LaBelle, Jeffrey (Thesis director) / Mossman, Kenneth (Committee member) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Management (Contributor)
Created2013-05
135738-Thumbnail Image.png
Description
The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress within the body in the case of adverse neurological events such as traumatic brain injury. Using electrochemical impedance spectroscopy (EIS),

The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress within the body in the case of adverse neurological events such as traumatic brain injury. Using electrochemical impedance spectroscopy (EIS), a linear dynamic range of glutamate was detected with a slope of 36.604 z/ohm/[pg/mL], a lower detection limit at 12.417 pg/mL, correlation of 0.97, and an optimal binding frequency of 117.20 Hz. After running through a frequency sweep the binding frequency was determined based on the highest consistent reproducibility and slope. The sensor was found to be specific against literature researched non-targets glucose, albumin, and epinephrine and working in dilutions of whole blood up to a concentration of 25%. With the implementation of Nafion, the sensor had a 250% improvement in signal and 155% improvement in correlation in 90% whole blood, illustrating the promise of a working blood sensor. Future work includes longitudinal studies and utilizing mesoporous carbon as the immobilization platform and incorporating this as part of a continuous, multiplexed blood sensor with glucose oxidase.
ContributorsLam, Alexandria Nicole (Author) / LaBelle, Jeffrey (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05