Matching Items (13)
Filtering by

Clear all filters

151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
149983-Thumbnail Image.png
Description
Synthetic biology is constantly evolving as new ideas are incorporated into this increasingly flexible field. It incorporates the engineering of life with standard genetic parts and methods; new organisms with new genomes; expansion of life to include new components, capabilities, and chemistries; and even completely synthetic organisms that mimic life

Synthetic biology is constantly evolving as new ideas are incorporated into this increasingly flexible field. It incorporates the engineering of life with standard genetic parts and methods; new organisms with new genomes; expansion of life to include new components, capabilities, and chemistries; and even completely synthetic organisms that mimic life while being composed of non-living matter. We have introduced a new paradigm of synthetic biology that melds the methods of in vitro evolution with the goals and philosophy of synthetic biology. The Family B proteins represent the first de novo evolved natively folded proteins to be developed with increasingly powerful tools of molecular evolution. These proteins are folded and functional, composed of the 20 canonical amino acids, and in many ways resemble natural proteins. However, their evolutionary history is quite different from natural proteins, as it did not involve a cellular environment. In this study, we examine the properties of DX, one of the Family B proteins that have been evolutionarily optimized for folding stability. Described in chapter 2 is an investigation into the primitive catalytic properties of DX, which seems to have evolved a serendipitous ATPase activity in addition to its selected ATP binding activity. In chapters 3 and 4 we express the DX gene in E. coli cells and observe massive changes in cell morphology, biochemistry, and life cycle. Exposure to DX activates several defense systems in E. coli, including filamentation, cytoplasmic segregation, and reversion to a viable but non-culturable state. We examined these phenotypes in detail and present a model that accounts for how DX causes such a rearrangement of the cell.
ContributorsStomel, Joshua (Author) / Chaput, John C (Thesis advisor) / Korch, Shaleen (Committee member) / Roberson, Robert (Committee member) / Ghirlanda, Gionvanna (Committee member) / Arizona State University (Publisher)
Created2011
154018-Thumbnail Image.png
Description
Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of significant length. Threose nucleic acid (TNA) has received significant attention as a complete replication system has been developed by engineering natural polymerases to broaden their substrate specificity. The system, however, suffers from a high mutational load reducing its utility. This thesis will cover the development of two new polymerases capable of transcribing and reverse transcribing TNA polymers with high efficiency and fidelity. The polymerases are identified using a new strategy wherein gain-of-function mutations are sampled in homologous protein architectures leading to subtle optimization of protein function. The new replication system has a fidelity that supports the propagation of genetic information enabling in vitro selection of functional TNA molecules. TNA aptamers to human alpha-thrombin are identified and demonstrated to have superior stability compared to DNA and RNA in biologically relevant conditions. This is the first demonstration that functional TNA molecules have potential in biotechnology and molecular medicine.
ContributorsDunn, Matthew Ryan (Author) / Chaput, John C (Thesis advisor) / LaBaer, Joshua (Committee member) / Lake, Douglas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2015
136591-Thumbnail Image.png
Description
Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary water treatment or as a medical disinfectant, among many other uses. Various carbon-based catalysts and binders for use at the cathode of a an MFC for H2O2 production are explored using linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) techniques. The oxygen reduction reaction (ORR) at the cathode has slow kinetics at conditions present in the MFC, making it important to find a catalyst type and loading which promote a 2e- (rather than 4e-) reaction to maximize H2O2 formation. Using LSV methods, I compared the cathodic overpotentials associated with graphite and Vulcan carbon catalysts as well as Nafion and AS-4 binders. Vulcan carbon catalyst with Nafion binder produced the lowest overpotentials of any binder/catalyst combinations. Additionally, I determined that pH control may be required at the cathode due to large potential losses caused by hydroxide (OH-) concentration gradients. Furthermore, RRDE tests indicate that Vulcan carbon catalyst with a Nafion binder has a higher H2O2 production efficiency at lower catalyst loadings, but the trade-off is a greater potential loss due to higher activation energy. Therefore, an intermediate catalyst loading of 0.5 mg/cm2 Vulcan carbon with Nafion binder is recommended for the final MFC design. The chosen catalyst, binder, and loading will maximize H2O2 production, optimize MFC performance, and minimize the need for additional energy input into the system.
ContributorsStadie, Mikaela Johanna (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133722-Thumbnail Image.png
Description
One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain on the cells. This study aimed to identify aromatic-sensitive native promoters and heterologous biosensors for construction of closed-loop control of efflux pump expression in E. coli. Using a promoter library constructed by Zaslaver et al., activation was measured through GFP output. Promoters were evaluated for their sensitivity to the addition of one of four aromatic compounds, their "leaking" of signal, and their induction threshold. Out of 43 targeted promoters, 4 promoters (cmr, mdtG, yahN, yajR) for styrene oxide, 2 promoters (mdtG, yahN) for styrene, 0 promoters for 2-phenylethanol, and 1 promoter for phenol (pheP) were identified as ideal control elements in aromatic bioproduction. In addition, a series of three biosensors (NahR, XylS, DmpR) known to be inducible by other aromatics were screened against styrene oxide, 2-phenylethanol, and phenol. The targeted application of these biosensors is aromatic-induced activation of linked efflux pumps. All three biosensors responded strongly in the presence of styrene oxide and 2-phenylethanol, with minor activation in the presence of phenol. Bioproduction of aromatics continues to gain traction in the biotechnology industry, and the continued discovery of aromatic-inducible elements will be essential to effective pathway control.
ContributorsXu, Jimmy (Author) / Nielsen, David (Thesis director) / Wang, Xuan (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137115-Thumbnail Image.png
Description
In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for

In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for all cells were life time, thermal cycle/time based performance, and failure modes for cells. Two types of DFFC, anode and electrolyte supported, were used with two different fuel feed streams of propane/isobutene and ethanol. Several test configurations consisting of single cells, as well as stacked systems were tested to show how cell performed and degraded over time. All tests were run using a Biologic VMP3 potentiostat connected to a cell placed within the flame of a modified burner MSR® Wisperlite Universal stove. The maximum current and power output seen by any electrolyte supported DFFCs tested was 47.7 mA/cm2 and 9.6 mW/cm2 respectively, while that generated by anode supported DFFCs was 53.7 mA/cm2 and 9.25 mW/cm2 respectively with both cells operating under propane/isobutene fuel feed streams. All TECs tested dramatically outperformed both constructions of DFFC with a maximum current and power output of 309 mA/cm2 and 80 mW/cm2 respectively. It was also found that electrolyte supported DFFCs appeared to be less susceptible to degradation of the cell microstructure over time but more prone to cracking, while anode supported DFFCs were dramatically less susceptible to cracking but exhibited substantial microstructure degradation and shorter usable lifecycles. TECs tested were found to only be susceptible to overheating, and thus were suggested for use with electrolyte supported DFFCs in remote powering applications.
ContributorsTropsa, Sean Michael (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
135272-Thumbnail Image.png
Description
Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to assist the reuse of gray water. This research focuses on wastewater treatment at the U.S. military forward operating bases (FOBs).

Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to assist the reuse of gray water. This research focuses on wastewater treatment at the U.S. military forward operating bases (FOBs). FOBs experience significant challenges with their wastewater treatment due to their isolation and dangers in transporting waste water and fresh water to and from the bases. Even though it is theoretically favorable to produce power in a MFC while treating black water, producing H2O2 is more useful and practical because it is a powerful cleaning agent that can reduce odor, disinfect, and aid in the treatment of gray water. Various acid forms of buffers were tested in the anode and cathode chamber to determine if the pH would lower in the cathode chamber while maintaining H2O2 efficiency, as well as to determine ion diffusion from the anode to the cathode via the membrane. For the catholyte experiments, phosphate and bicarbonate were tested as buffers while sodium chloride was the control. These experiments determined that the two buffers did not lower the pH. It was seen that the phosphate buffer reduced the H2O2 efficiency significantly while still staying at a high pH, while the bicarbonate buffer had the same efficiency as the NaCl control. For the anolyte experiments, it was shown that there was no diffusion of the buffers or MFC media across the membrane that would cause a decrease in the H2O2 production efficiency.
ContributorsThompson, Julia (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133669-Thumbnail Image.png
Description
The removal of support material from metal 3D printed objects is a laborious necessity for the post-processing of powder bed fusion printing (PBF). Supports are typically mechanically removed by machining techniques. Sacrificial supports are necessary in PBF printing to relieve thermal stresses and support overhanging parts often resulting in the

The removal of support material from metal 3D printed objects is a laborious necessity for the post-processing of powder bed fusion printing (PBF). Supports are typically mechanically removed by machining techniques. Sacrificial supports are necessary in PBF printing to relieve thermal stresses and support overhanging parts often resulting in the inclusion of supports in regions of the part that are not easily accessed by mechanical removal methods. Recent innovations in PBF support removal include dissolvable metal supports through an electrochemical etching process. Dissolvable PBF supports have the potential to significantly reduce the costs and time associated with traditional support removal. However, the speed and effectiveness of this approach is inhibited by numerous factors such as support geometry and metal powder entrapment within supports. To fully realize this innovative approach, it is necessary to model and understand the design parameters necessary to optimize support structures applicable to an electrochemical etching process. The objective of this study was to evaluate the impact of block additive manufacturing support parameters on key process outcomes of the dissolution of 316 stainless steel support structures. The parameters investigated included hatch spacing and perforation, and the outcomes of interests included time required for completion, surface roughness, and effectiveness of the etching process. Electrical current was also evaluated as an indicator of process completion. Analysis of the electrical current throughout the etching process showed that the dissolution is diffusion limited to varying degrees, and is dependent on support structure parameters. Activation and passivation behavior was observed during current leveling, and appeared to be more pronounced in non-perforated samples with less dense hatch spacing. The correlation between electrical current and completion of the etching process was unclear, as the support structures became mechanically removable well before the current leveled. The etching process was shown to improve surface finish on unsupported surfaces, but support was shown to negatively impact surface finish. Tighter hatch spacing was shown to correlate to larger variation in surface finish, due to ridges left behind by the support structures. In future studies, it is recommended current be more closely correlated to process completion and more roughness data be collected to identify a trend between hatch spacing and surface roughness.
ContributorsAbranovic, Brandon (Author) / Hildreth, Owen (Thesis director) / Torres, Cesar (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05