Matching Items (2)
Filtering by

Clear all filters

134886-Thumbnail Image.png
Description
This study seeks to determine whether female and male students in general chemistry courses differ in exam and course-based performance. Using data from previous semesters of CHM 101 (Marks), CHM 101 (Bauer), CHM 114 (Seo, Windman), CHM 113/116 (Cabirac), and CHM 117/118 (Williams) courses taught at Arizona State University, the

This study seeks to determine whether female and male students in general chemistry courses differ in exam and course-based performance. Using data from previous semesters of CHM 101 (Marks), CHM 101 (Bauer), CHM 114 (Seo, Windman), CHM 113/116 (Cabirac), and CHM 117/118 (Williams) courses taught at Arizona State University, the total exam scores and final course grades for each student were recorded and analyzed. The results of this study differ greatly by course type, as each course corresponded to a different STEM major. While CHM 113/116, the pre-medicinal majors course, saw evidence of stereotype threat via lower female exam performance, the other courses saw no statistical difference between male and female performance on their exam scores or overall course grades. For CHM 101, this was understandable, as the majority of students were nursing majors, who likely did not experience tokenism or feel stereotyped negatively in their science classes. However, CHM 114, the engineering majors course, and CHM 117/118, the research science course, saw parity with respect to male and female student performance. This suggests the possibility that female students face adversity in science and math courses before college that cause only those with high self-efficacy to advance to a career in these fields.
ContributorsWoner, Victoria Elaine (Author) / Gould, Ian (Thesis director) / Saenz, Delia (Committee member) / Austin, Ara (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135861-Thumbnail Image.png
Description
Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is the force exerted on liquid from an applied potential (1).

Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is the force exerted on liquid from an applied potential (1). EP is the force exerted on charged particles in a uniform electric field (2). DEP is the force exerted on particles (charged and uncharged) in a non-uniform electric field (3). This experiment was focused on the testing of a new microfluidic device to see if it could improve the focusing of proteins in dielectrophoresis. It was predicted that the addition of a salt bridge would improve focusing by preventing the ions created by the electrolysis of water around the electrodes from interacting with the proteins and causing aggregation, among other problems. Control trials using the old device showed that electrolysis was likely occurring and was the causal agent for poor outcomes. After applying the electric potential for some time a pH front traveled through the channel causing aggregation of proteins and the current in the channel decreased rapidly, even while the voltage was held constant. The resistance in the channels of the control trials also slightly decreased over time, until the pH shift occurred, at which time it increased rapidly. Experimental trials with a new device that included salt bridges eliminated this pH front and had a roughly linear increase of current in the channel with the voltage applied. This device can now be used in future research with protein dielectrophoresis, including in the potential differentiation of different proteins. References: 1) Electroosmosis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 2) Electrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 3) Dielectrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006.
ContributorsHayes, Katelyn Donna (Author) / Hayes, Mark (Thesis director) / Borges, Chad (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05