Matching Items (6)
Filtering by

Clear all filters

136321-Thumbnail Image.png
Description
Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in

Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. These commercial assays measure reactivity against the immunodominant N antigen and can have a false negative rates of 20-30%. Centralized testing by clinical labs can delay rapid screening in an outbreak setting. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to five individual MV proteins representing 85% of the measles proteome. Methods: MV genes were subcloned into pANT_cGST vector to generate C-terminal GST fusion proteins. Single MV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured using a sandwich ELISA for GST expression using relative light units (RLUs) as readouts. Single MV antigens were used as bait to determine the IgG-dependent reactivity in 12 serum samples obtained from immunized animals with previously determined neutralization titer (NT) and the correlation between NT and ELISA reactivity was determined. Results: Protein expression of five measles genes of interest, M, N, F, H, and L, was measured. L exhibited the strongest protein expression with an average RLU value of 4.34 x 10^9. All proteins were expressed at least 50% greater than control (2.33 x 10^7 RLU). As expected, reactivity against the N was the highest, followed by reactivity against M, F, H and L. The best correlation with NT titer was reactivity against F (R^2 = 0.62). Conclusion: These data indicate that the expression of single MV genes M, N, F, H, and L are suitable antigens for serologic capture analysis of measles immunity.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis director) / Reyes del Valle, Jorge (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136379-Thumbnail Image.png
Description
Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy.

Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy. Beta lactam antibiotics used to be highly effective against S. aureus infections, but resistance mechanisms have rendered methicillin, oxacillin, and other beta lactam antibiotics ineffective against these infections. A promising avenue for MRSA treatment lies in the use of synthetic antibodies—molecules that bind with specificity to a given compound. Synbody 14 is an example of such a synbody, and has been designed with MRSA treatment in mind. Mouse model studies have even associated Syn14 treatment with reduced weight loss and morbidity in MRSA-infected mice. In this experiment, in vitro activity of Syn 14 and oxacillin was assessed. Early experiments measured Syn 14 and oxacillin’s effectiveness in inhibiting colony growth in growth media, mouse serum, and mouse blood. Syn14 and oxacillin had limited efficacy against USA300 strain MRSA, though interestingly it was noted that Syn14 outperformed oxacillin in mouse serum and whole mouse blood, indicating the benefits of its binding properties. A second experiment measured the impact that a mix of oxacillin and Syn 14 had on colony growth, as well as the effect of adding them simultaneously or one after the other. While use of either bactericidal alone did not show a major inhibitory effect on USA300 MRSA colony growth, their use in combination showed major decreases in colony growth. Moreover, it was found that unlike other combination therapies, Syn14 and oxacillin did not require simultaneous addition to MRSA cells to achieve inhibition of cell growth. They merely required that Syn14 be added first. This result suggests Syn14’s possible utility in therapeutic settings, as the time insensitivity of synergy removes a major hurdle to clinical use—the difficulty in ensuring that two drugs reach an affected area at the same time. Syn14 remains a promising antimicrobial agent, and further study should focus on its precise mechanism of action and suitability in clinical treatment of MRSA infections.
ContributorsMichael, Alexander (Author) / Diehnelt, Chris (Thesis director) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
137039-Thumbnail Image.png
Description
Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address

Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address the lack of knowledge with supplemental educational materials to be partnered with an engineering capstone project that provides a low cost diagnostic test.
ContributorsShawver, Jamie Christine (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137123-Thumbnail Image.png
Description
Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid

Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid coating on silk produced by the embiid Antipaluria urichi is shown using scanning and transmission electron microscopy, FT-IR, and water drop contact angle analysis. Subsequently, the composition of the lipid layer is then characterized by 1H NMR and GC-MS.
ContributorsOsborn Popp, Thomas Michael (Author) / Yarger, Jeffery (Thesis director) / Holland, Gregory (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
136074-Thumbnail Image.png
Description
For many pre-health and graduate programs, organic chemistry is often the most difficult prerequisite course that students will take. To alleviate this difficulty, an intelligent tutoring system was developed to provide valuable feedback to practice problems within organic chemistry. This paper focuses on the design and use of an intelligent

For many pre-health and graduate programs, organic chemistry is often the most difficult prerequisite course that students will take. To alleviate this difficulty, an intelligent tutoring system was developed to provide valuable feedback to practice problems within organic chemistry. This paper focuses on the design and use of an intelligent input parser for nomenclature questions within this system. Students in Dr. Gould's Fall 2014 organic chemistry class used this system and their data was collected to analyze the effectiveness of the input parser. Overall the students' feedback was optimistic and there was a positive relationship between test scores and student use of the system.
ContributorsHusarcik, Edward Andrew (Author) / Gould, Ian (Thesis director) / VanLehn, Kurt (Committee member) / Beerman, Eric (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
137663-Thumbnail Image.png
Description
Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV strains, only “high-risk” types, may progress to cancer. Serum antibodies to HPV oncoproteins are stable and specific markers that may

Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV strains, only “high-risk” types, may progress to cancer. Serum antibodies to HPV oncoproteins are stable and specific markers that may be able to detect high-grade cervical intraepithelial neoplasia (CIN3). Biomarkers have potential as a rapid, point-of-care HPV screening tool for low resource areas in the way that traditional cytology cannot, and HPV DNA testing is not yet able to.
Methods: We have designed a multiplexed magnetics programmable bead ELISA (MagProBE) to profile the immune responses of the proteins from 11 high-risk HPV types and 2 low-risk types—106 genes in total. HPV genes were optimized for human expression and either built with PCR or commercially purchased, and cloned into the Gateway-compatible pANT7_cGST vector for in vitro transcription/translation (IVTT) in a MagProBE array. Anti-GST antibody (Ab) labeling was then used to measure gene expression.
Results: 53/106 (50%) HPV genes have been cloned and tested for expression of protein. 91% of HPV proteins expressed at levels above the background control (MFI = 2288), and the mean expression was MFI = 4318. Codon-optimized genes have also shown a 20% higher expression over non-codon optimized genes.
Conclusion: Although this research is ongoing, it suggests that gene optimization may improve IVTT expression of HPV proteins in human HeLa lysate. Once the remaining HPV proteins have been expression confirmed, the cDNA for each gene will be printed onto slides and tested in serologic assays to identify potential Ab biomarkers to CIN3.
ContributorsResnik, Jack Isiah (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Purushothaman, Immanuel (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05