Matching Items (1)
Filtering by

Clear all filters

149699-Thumbnail Image.png
Description
A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed at the National Cancer Institute's (NCI) Developmental Therapeutic Program (DTP) and found to be cytotoxic at sub-micromolar concentrations, and have

A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed at the National Cancer Institute's (NCI) Developmental Therapeutic Program (DTP) and found to be cytotoxic at sub-micromolar concentrations, and have shown between a 100 and a 1000-fold increase in specificity towards lung, colon, CNS, and melanoma cell lines. These ATP mimics have been found to correlate with sequestosome 1 (SQSTM1), a protein implicated in drug resistance and cell survival in various cancer cell lines. Using the DTP COMPARE algorithm, compounds 1A and 1B were shown to correlate to each other at 77%, but failed to correlate with other benzimidazole based extended amidines previously synthesized in this laboratory suggesting they operate through a different biological mechanism.
ContributorsDarzi, Evan (Author) / Skibo, Edward (Thesis advisor) / Gould, Ian (Committee member) / Francisco, Wilson (Committee member) / Arizona State University (Publisher)
Created2011