Matching Items (23)
Filtering by

Clear all filters

152192-Thumbnail Image.png
Description
ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the

ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the abovementioned techniques were optimized. In addition, MALDI mass spectrometry based peptide synthesis characterization on semiconductor microchips was developed and novel applications of a CombiMatrix (CBMX) platform for electrochemically controlled synthesis were explored. We have investigated performance of 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) derivatives as photo-labile protecting group. Specifically, influence of substituents on 4 and 5 positions of phenyl ring of NPPOC group on the rate of photolysis and the yield of the amine was investigated. The results indicated that substituents capable of forming a π-network with the nitro group enhanced the rate of photolysis and yield. Once such properly substituted NPPOC groups were used, the rate of photolysis/yield depended on the nature of protected amino group indicating that a different chemical step during the photo-cleavage process became the rate limiting step. We also focused on electrochemically-directed parallel synthesis of high-density peptide microarrays using the CBMX technology referred to above which uses electrochemically generated acids to perform patterned chemistry. Several issues related to peptide synthesis on the CBMX platform were studied and optimized, with emphasis placed on the reactions of electro-generated acids during the deprotection step of peptide synthesis. We have developed a MALDI mass spectrometry based method to determine the chemical composition of microarray synthesis, directly on the feature. This method utilizes non-diffusional chemical cleavage from the surface, thereby making the chemical characterization of high-density microarray features simple, accurate, and amenable to high-throughput. CBMX Corp. has developed a microarray reader which is based on electro-chemical detection of redox chemical species. Several parameters of the instrument were studied and optimized and novel redox applications of peptide microarrays on CBMX platform were also investigated using the instrument. These include (i) a search of metal binding catalytic peptides to reduce overpotential associated with water oxidation reaction and (ii) an immobilization of peptide microarrays using electro-polymerized polypyrrole.
ContributorsKumar, Pallav (Author) / Woodbury, Neal (Thesis advisor) / Allen, James (Committee member) / Johnston, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152146-Thumbnail Image.png
Description
Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.
ContributorsPrabhakar, Amlendu (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2013
152827-Thumbnail Image.png
Description
Ribulose-1, 5-bisphosphate carboxylase oxygenase, commonly known as RuBisCO, is an enzyme involved in carbon fixation in photosynthetic organisms. The enzyme is subject to a mechanism-based deactivation during its catalytic cycle. RuBisCO activase (Rca), an ancillary enzyme belonging to the AAA+ family of the ATP-ases, rescues RuBisCO by facilitating the removal

Ribulose-1, 5-bisphosphate carboxylase oxygenase, commonly known as RuBisCO, is an enzyme involved in carbon fixation in photosynthetic organisms. The enzyme is subject to a mechanism-based deactivation during its catalytic cycle. RuBisCO activase (Rca), an ancillary enzyme belonging to the AAA+ family of the ATP-ases, rescues RuBisCO by facilitating the removal of the tightly bound sugar phosphates from the active sites of RuBisCO. In this work, we investigated the ATP/ADP dependent oligomerization equilibrium of fluorescently tagged Rca for a wide range of concentrations using fluorescence correlation spectroscopy. Results show that in the presence of ADP-Mg2+, the oligomerization state of Rca gradually changes in steps of two subunits. The most probable association model supports the dissociation constants (K_d) of ∼4, 1, 1 μM for the monomer-dimer, dimer-tetramer, and tetramer-hexamer equlibria, respectively. Rca continues to assemble at higher concentrations which are indicative of the formation of aggregates. In the presence of ATP-Mg2+, a similar stepwise assembly is observed. However, at higher concentrations (30-75 µM), the average oligomeric size remains relatively unchanged around six subunits per oligomer. This is in sharp contrast with observations in ADP-Mg2+, where a marked decrease in the diffusion coefficient of Rca was observed, consistent with the formation of aggregates. The estimated K_d values obtained from the analysis of the FCS decays were similar for the first steps of the assembly process in both ADP-Mg2+ and ATP-Mg2+. However, the formation of the hexamer from the tetramer is much more favored in ATP-Mg2+, as evidenced from 20 fold lower K_d associated with this assembly step. This suggests that the formation of a hexameric ring in the presence of ATP-Mg2+. In addition to that, Rca aggregation is largely suppressed in the presence of ATP-Mg2+, as evidenced from the 1000 fold larger K_d value for the hexamer-24 mer association step. In essence, a fluorescence-based method was developed to monitor in vitro protein oligomerization and was successfully applied with Rca. The results provide a strong hint at the active oligomeric structure of Rca, and this information will hopefully help the ongoing research on the mechanistic enzymology of Rca.
ContributorsChakraborty, Manas (Author) / Levitus, Marcia (Thesis advisor) / Angell, Charles (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2014
153337-Thumbnail Image.png
Description
Atomic force microscopy (AFM) has become an important tool to characterize and image surfaces with nanoscale resolution. AFM imaging technique has been utilized to study a wide range of substances such as DNA, proteins, cells, silicon surfaces, nanowires etc. Hence AFM has become extremely important in the field of biochemistry,

Atomic force microscopy (AFM) has become an important tool to characterize and image surfaces with nanoscale resolution. AFM imaging technique has been utilized to study a wide range of substances such as DNA, proteins, cells, silicon surfaces, nanowires etc. Hence AFM has become extremely important in the field of biochemistry, cell biology and material science. Functionalizing the AFM tip made it possible to detect molecules and their interaction using recognition imaging at single molecule level. Also the unbinding force of two molecules can be investigated based on AFM based single molecule force spectroscopy.

In the first study, a new chemical approach to functionalize the AFM tip in a simple and user-friendly way has been described. Copper-free click chemistry and a vinyl sulfone PEG linker have been utilized during the process. Using this technique, human thrombin and integrin were detected in separate experiments. Then a novel tri-arm linker with two recognition molecules on it was designed and two proteins (human thrombin and integrin) were detected simultaneously in the same experiment using recognition imaging. This technique can be applied to understand many multivalent interactions taking place in nature. Using the same tri-arm linker functionalized with two biotin molecules, the interaction of streptavidin with mono-biotin and bis-biotin ligands were investigated. The thermal stability of streptavidin-biotin complex was also studied using SDS-PAGE analysis.

In the final study, structure of native chromatin extracted from normal and cancer cell lines were analyzed using AFM imaging and agarose gel electrophoresis. Different salt fractions were used to extract chromatin region depending on their solubility. Mnase sensitivity of the chromatin sample was used to understand the open and closed structures of chromatin from different sources. The amount of chromatin in different salt fractions could act as an indicator of amount of open and condensed chromatin in normal and cancer cells. Eventually this ratio of closed and open structure of chromatin could be an indicator of tumorigenic nature of particular cell lines.
ContributorsSenapati, Subhadip (Author) / Lindsay, Stuart (Thesis advisor) / Zhang, Peiming (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2015
153344-Thumbnail Image.png
Description
Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.
ContributorsRanjan, Rajeev (Author) / Gould, Ian R (Thesis advisor) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeff (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2015
149856-Thumbnail Image.png
Description
Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped

Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped in ~1.67 superhelical turns. Although the nucleosomes are stable protein-DNA complexes, they undergo spontaneous conformational changes that occur in an asynchronous fashion. This conformational dynamics, defined by the "site-exposure" model, involves the DNA unwrapping from the protein core and exposing itself transiently before wrapping back. Physiologically, this allows regulatory proteins to bind to their target DNA sites during cellular processes like replication, DNA repair and transcription. Traditional biochemical assays have stablished the equilibrium constants for the accessibility to various sites along the length of the nucleosomal DNA, from its end to the middle of the dyad axis. Using fluorescence correlation spectroscopy (FCS), we have established the position dependent rewrapping rates for nucleosomes. We have also used Monte Carlo simulation methods to analyze the applicability of FRET fluctuation spectroscopy towards conformational dynamics, specifically motivated by nucleosome dynamics. Another important conformational change that is involved in cellular processes is the disassembly of nucleosome into its constituent particles. The exact pathway adopted by nucleosomes is still not clear. We used dual color fluorescence correlation spectroscopy to study the intermediates during nucleosome disassembly induced by changing ionic strength. Studying the nature of nucleosome conformational change and the kinetics is very important in understanding gene expression. The results from this thesis give a quantitative description to the basic unit of the chromatin.
ContributorsGurunathan, Kaushik (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Woodbury, Neal (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
151229-Thumbnail Image.png
Description
It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be

It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be linked with dysfunctional complexes in the mitochondrial respiratory chain, increased oxidative stress, and potential cell death. Increased understanding of the pathophysiology of this disease has enabled the development of various therapeutic strategies aimed at restoring mitochondrial respiration. This thesis contains an analysis of the biological activity of several classes of antioxidants against oxidative stress induced by diethyl maleate in Friedreich's Ataxia lymphocytes and CEM leukemia cells. Analogues of vitamin E α-tocopherol have been shown to protect cells under oxidative stress. However, these same analogues show various levels of inhibition towards the electron transport chain complex I. Bicyclic pyridinols containing a ten carbon substituent provided favorable cytoprotection. N-hydroxy-4-pyridone compounds were observed to provide little protection. Similarly, analogues of CoQ10 in the form of pyridinol and pyrimidinol compounds also preserved cell viability at low concentrations.
ContributorsJaruvangsanti, Jennifer (Author) / Hecht, Sidney (Thesis advisor) / Woodbury, Neal (Committee member) / Skibo, Edward (Committee member) / Arizona State University (Publisher)
Created2012
156131-Thumbnail Image.png
Description
Though DNA nanostructures (DNs) have become interesting subjects of drug delivery, in vivo imaging and biosensor research, however, for real biological applications, they should be ‘long circulating’ in blood. One of the crucial requirements for DN stability is high salt concentration (like ~5–20 mM Mg2+) that is unavailable in a

Though DNA nanostructures (DNs) have become interesting subjects of drug delivery, in vivo imaging and biosensor research, however, for real biological applications, they should be ‘long circulating’ in blood. One of the crucial requirements for DN stability is high salt concentration (like ~5–20 mM Mg2+) that is unavailable in a cell culture medium or in blood. Hence DNs denature promptly when injected into living systems. Another important factor is the presence of nucleases that cause fast degradation of unprotected DNs. The third factor is ‘opsonization’ which is the immune process by which phagocytes target foreign particles introduced into the bloodstream. The primary aim of this thesis is to design strategies that can improve the in vivo stability of DNs, thus improving their pharmacodynamics and biodistribution.

Several strategies were investigated to address the three previously mentioned limitations. The first attempt was to study the effect length and conformation of polyethylene glycol (PEG) on DN stability. DNs were also coated with PEG-lipid and human serum albumin (HSA) and their stealth efficiencies were compared. The findings reveal that both PEGylation and albumin coating enhance low salt stability, increase resistance towards nuclease action and reduce uptake of DNs by macrophages. Any protective coating around a DN increases its hydrodynamic radius, which is a crucial parameter influencing their clearance. Keeping this in mind, intrinsically stable DNs that can survive low salt concentration without any polymer coating were built. Several DNA compaction agents and DNA binders were screened to stabilize DNs in low magnesium conditions. Among them arginine, lysine, bis-lysine and hexamine cobalt showed the potential to enhance DN stability.

This thesis also presents a sensitive assay, the Proximity Ligation Assay (PLA), for the estimation of DN stability with time. It requires very simple modifications on the DNs and it can yield precise results from a very small amount of sample. The applicability of PLA was successfully tested on several DNs ranging from a simple wireframe tetrahedron to a 3D origami and the protocol to collect in vivo samples, isolate the DNs and measure their stability was developed.
ContributorsBanerjee, Saswata (Author) / Yan, Hao (Thesis advisor) / Angell, Austen (Committee member) / Woodbury, Neal (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2018
156515-Thumbnail Image.png
Description
The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed

The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed to study the photophysics of these BODIPY dyes in the micellar environments. Amphiphilic polymers with a hydrophobic character and low Critical Micelle Concentration (CMC) protected BODIPYS from the aqueous environment. Moderate dye loading conditions did not result in ground-state dimerization, and only fluorescence lifetimes and brightnesses were affected. However, amphiphilic polymers with a hydrophilic character and high CMC did not protect the BODIPYS from the aqueous environment with concomitant ground-state dimerization and quenching of the fluorescence intensity, lifetime, and brightnesses even at low dye loading conditions. At the doubly-labeled interfaces of Escherichia coli (E. coli) DNA processivity β clamps, the interchromophric interactions of four rhodamine dyes were studied: tetramethylrhodamine (TMR), TMR C6, Alexa Fluor 488, and Alexa Fluor 546. Absorbance and fluorescence measurements were performed on doubly-labeled β clamps with singly-labeled β clamps and free dyes as controls. The absorbance measurements revealed that both TMR and TMR C6 readily formed H-dimers (static quenching) at the doubly-labeled interfaces of the β clamps. However, the TMR with a longer linker (TMR C6) also displayed a degree of dynamic quenching. For Alexa Fluor 546 and Alexa Fluor 488, there were no clear signs of dimerization in the absorbance scans. However, the fluorescence properties (fluorescence intensity, lifetime, and anisotropy) of the Alexa Fluor dyes significantly changed when three methodologies were employed to disrupt the doubly-labeled interfaces: 1) the addition of sodium dodecyl sulfate (SDS) detergent to denature the proteins, 2) the addition of clamp loader (γ complex) to open one of the two interfaces, and 3) the use of subunit exchange to decrease the number of dyes per interface. These fluorescence measurements indicated that for the Alexa Fluor dyes, other interchromophoric interactions were present such as dynamic quenching and homo-Förster Resonance Energy Transfer (homo-FRET).
ContributorsDonaphon, Bryan Matthew (Author) / Levitus, Marcia (Thesis advisor) / Van Horn, Wade (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2018
156312-Thumbnail Image.png
Description
Glycans are monosaccharide-based heteropolymers that are found covalently attached to many different proteins and lipids and are ubiquitously displayed on the exterior surfaces of cells. Serum glycan composition and structure are well known to be altered in many different types of cancer. In fact, glycans represent a promising but only

Glycans are monosaccharide-based heteropolymers that are found covalently attached to many different proteins and lipids and are ubiquitously displayed on the exterior surfaces of cells. Serum glycan composition and structure are well known to be altered in many different types of cancer. In fact, glycans represent a promising but only marginally accessed source of cancer markers. The approach used in this dissertation, which is referred to as “glycan node analysis”, is a molecularly bottom-up approach to plasma/serum (P/S) glycomics based on glycan linkage analysis that captures features such as α2-6 sialylation, β1-6 branching, and core fucosylation as single analytical signals.

The diagnostic utility of this approach as applied to lung cancer patients across all stages as well as prostate, serous ovarian, and pancreatic cancer patients compared to certifiably healthy individuals, nominally healthy individuals and/or risk-matched controls is reported. Markers for terminal fucosylation, α2-6 sialylation, β1-4 branching, β1-6 branching and outer-arm fucosylation were most able to differentiate cases from controls. These markers behaved in a stage-dependent manner in lung cancer as well as other types of cancer. Using a Cox proportional hazards regression model, the ability of these markers to predict progression and survival in lung cancer patients was assessed. In addition, the potential mechanistic role of aberrant P/S glycans in cancer progression is discussed.

Plasma samples from former bladder cancer patients with currently no evidence of disease (NED), non-muscle invasive bladder cancer (NMIBC), and muscle invasive bladder cancer (MIBC) along with certifiably healthy controls were analyzed. Markers for α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation were able to separate current and former (NED) cases from controls; but NED, NMIBC, and MIBC were not distinguished from one another. Markers for α2-6 sialylation and β1-6 branching were able to predict recurrence from the NED state using a Cox proportional hazards regression model adjusted for age, gender, and time from cancer. These two glycan features were found to be correlated to the concentration of C-reactive protein, a known prognostic marker for bladder cancer, further strengthening the link between inflammation and abnormal plasma protein glycosylation.
ContributorsRoshdiferdosi, Shadi (Author) / Borges, Chad R (Thesis advisor) / Woodbury, Neal (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2018