Matching Items (16)

Filtering by

Clear all filters

135861-Thumbnail Image.png

The Focusing of Proteins Using Dielectrophoresis in an Improved Microfluidic Device

Description

Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is

Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is the force exerted on liquid from an applied potential (1). EP is the force exerted on charged particles in a uniform electric field (2). DEP is the force exerted on particles (charged and uncharged) in a non-uniform electric field (3). This experiment was focused on the testing of a new microfluidic device to see if it could improve the focusing of proteins in dielectrophoresis. It was predicted that the addition of a salt bridge would improve focusing by preventing the ions created by the electrolysis of water around the electrodes from interacting with the proteins and causing aggregation, among other problems. Control trials using the old device showed that electrolysis was likely occurring and was the causal agent for poor outcomes. After applying the electric potential for some time a pH front traveled through the channel causing aggregation of proteins and the current in the channel decreased rapidly, even while the voltage was held constant. The resistance in the channels of the control trials also slightly decreased over time, until the pH shift occurred, at which time it increased rapidly. Experimental trials with a new device that included salt bridges eliminated this pH front and had a roughly linear increase of current in the channel with the voltage applied. This device can now be used in future research with protein dielectrophoresis, including in the potential differentiation of different proteins. References: 1) Electroosmosis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 2) Electrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 3) Dielectrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006.

Contributors

Agent

Created

Date Created
2016-05

154412-Thumbnail Image.png

Thermodynamics and kinetics of DNA tile-based self-assembly

Description

Deoxyribonucleic acid (DNA) has emerged as an attractive building material for creating complex architectures at the nanometer scale that simultaneously affords versatility and modularity. Particularly, the programmability of DNA enables the assembly of basic building units into increasingly complex, arbitrary

Deoxyribonucleic acid (DNA) has emerged as an attractive building material for creating complex architectures at the nanometer scale that simultaneously affords versatility and modularity. Particularly, the programmability of DNA enables the assembly of basic building units into increasingly complex, arbitrary shapes or patterns. With the expanding complexity and functionality of DNA toolboxes, a quantitative understanding of DNA self-assembly in terms of thermodynamics and kinetics, will provide researchers with more subtle design guidelines that facilitate more precise spatial and temporal control. This dissertation focuses on studying the physicochemical properties of DNA tile-based self-assembly process by recapitulating representative scenarios and intermediate states with unique assembly pathways.

First, DNA double-helical tiles with increasing flexibility were designed to investigate the dimerization kinetics. The higher dimerization rates of more rigid tiles result from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. Next, the thermodynamics and kinetics of single tile attachment to preformed “multitile” arrays were investigated to test the fundamental assumptions of tile assembly models. The results offer experimental evidences that double crossover tile attachment is determined by the electrostatic environment and the steric hindrance at the binding site. Finally, the assembly of double crossover tiles within a rhombic DNA origami frame was employed as the model system to investigate the competition between unseeded, facet and seeded nucleation. The results revealed that preference of nucleation types can be tuned by controlling the rate-limiting nucleation step.

The works presented in this dissertation will be helpful for refining the DNA tile assembly model for future designs and simulations. Moreover, The works presented here could also be helpful in understanding how individual molecules interact and more complex cooperative bindings in chemistry and biology. The future direction will focus on the characterization of tile assembly at single molecule level and the development of error-free tile assembly systems.

Contributors

Agent

Created

Date Created
2016

151190-Thumbnail Image.png

Studies of singly and multiply charged secondary ion emission and the effects of oxygen on ionization and sputter erosion

Description

Mass spectrometric analysis requires that atoms from the sample be ionized in the gas phase. Secondary ion mass spectrometry achieves this by sputtering samples with an energetic primary ion beam. Several investigations of the sputtering and ionization process have been

Mass spectrometric analysis requires that atoms from the sample be ionized in the gas phase. Secondary ion mass spectrometry achieves this by sputtering samples with an energetic primary ion beam. Several investigations of the sputtering and ionization process have been conducted. Oxygen is commonly used in secondary ion mass spectrometry (SIMS) to increase ion yields, but also can complicate the interpretation of SIMS analyses. An 18O implant in silicon has been used to quantify the oxygen concentration at the surface of sputtered silicon in order to study the dependence on oxygen of several sputtering and depth profile phenomena. The ion yield dependence of trace elements in silicon on the surface oxygen concentration is a function of the ionization potential of the element. The ion yield is high and unaffected by oxygen for elements with low ionization potential and ranges over several orders of magnitude for elements with high ionization potential. Depth resolution in sputter profiles has been shown to be degraded by the presence of oxygen, the mechanism of this effect has been investigated using an 18O implant to quantify oxygen levels and it is shown that the process does not appear to be a consequence of surface oxide formation. Molecular ions are a source of mass interference in SIMS analysis, and multiply charged atomic ion signals might be interference-free due to the possible instability of multiply-charged molecular ions. Sputtered SiH2+, AlH2+, BeH2+, Mo22+ and Mg22+ ions have been observed and appear surprisingly stable. The formation mechanism of some of these species has been explored.

Contributors

Agent

Created

Date Created
2012

150715-Thumbnail Image.png

Design and synthesis of molecular models for photosynthetic photoprotection

Description

Most of the sunlight powering natural photosynthesis is absorbed by antenna arrays that transfer, and regulate the delivery of excitation energy to reaction centers in the chloroplast where photosynthesis takes place. Under intense sunlight the plants and certain organisms cannot

Most of the sunlight powering natural photosynthesis is absorbed by antenna arrays that transfer, and regulate the delivery of excitation energy to reaction centers in the chloroplast where photosynthesis takes place. Under intense sunlight the plants and certain organisms cannot fully utilize all of the sunlight received by antennas and excess redox species are formed which could potentially harm them. To prevent this, excess energy is dissipated by antennas before it reaches to the reaction centers to initiate electron transfer needed in the next steps of photosynthesis. This phenomenon is called non-photochemical quenching (NPQ). The mechanism of NPQ is not fully understood, but the process is believed to be initiated by a drop in the pH in thylakoid lumen in cells. This causes changes in otherwise nonresponsive energy acceptors which accept the excess energy, preventing oversensitization of the reaction center. To mimic this phenomenon and get insight into the mechanism of NPQ, a novel pH sensitive dye 3'6'-indolinorhodamine was designed and synthesized which in a neutral solution stays in a closed (colorless) form and does not absorb light while at low pH it opens (colored) and absorbs light. The absorption of the dye overlaps porphyrin emission, thus making energy transfer from the porphyrin to the dye thermodynamically possible. Several self-regulating molecular model systems were designed and synthesized consisting of this dye and zinc porphyrins organized on a hexaphenylbenzene framework to functionally mimic the role of the antenna in NPQ. When a dye-zinc porphyrin dyad is dissolved in an organic solvent, the zinc porphyrin antenna absorbs and emits light by normal photophysical processes. Time resolved fluorescence experiments using the single-photon-timing method with excitation at 425 nm and emission at 600 nm yielded a lifetime of 2.09 ns for the porphyrin first excited singlet state. When acetic acid is added to the solution of the dyad, the pH sensitive dye opens and quenches the zinc porphyrin emission decreasing the lifetime of the porphyrin first excited singlet state to 23 ps, and converting the excitation energy to heat. Under similar experimental conditions in a neutral solution, a model hexad containing the dye and five zinc porphyrins organized on a hexaphenylbenzene core decays exponentially with a time constant of 2.1 ns, which is essentially the same lifetime as observed for related monomeric zinc porphyrins. When a solution of the hexad is acidified, the dye opens and quenches all porphyrin first excited singlet states to <40 ps. This converts the excitation energy to heat and renders the porphyrins kinetically incompetent to readily donate electrons by photoinduced electron transfer, thereby mimicking the role of the antenna in photosynthetic photoprotection.

Contributors

Agent

Created

Date Created
2012

152636-Thumbnail Image.png

Protein dielectrophoresis using insulator-based microfluidic platforms

Description

Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to

Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to these challenges, conventional macro-scale separation techniques reach their limitations. While microfluidic devices require only pL-nL sample volumes, they offer several advantages such as speed, efficiency, and high throughput. This work elucidates the capability to manipulate proteins in a rapid and reliable manner with a novel migration technique, namely dielectrophoresis (DEP). Since protein analysis can often be achieved through a combination of orthogonal techniques, adding DEP as a gradient technique to the portfolio of protein manipulation methods can extend and improve combinatorial approaches. To this aim, microfluidic devices tailored with integrated insulating obstacles were fabricated to create inhomogeneous electric fields evoking insulator-based DEP (iDEP). A main focus of this work was the development of pre-concentration devices where topological micropost arrays are fabricated using standard photo- and soft lithographic techniques. With these devices, positive DEP-driven streaming of proteins was demonstrated for the first time using immunoglobulin G (IgG) and bovine serum albumin. Experimentally observed iDEP concentrations of both proteins were in excellent agreement with positive DEP concentration profiles obtained by numerical simulations. Moreover, the micropost iDEP devices were improved by introducing nano-constrictions with focused ion beam milling with which numerical simulations suggested enhancement of the DEP effect, leading to a 12-fold increase in concentration of IgG. Additionally, concentration of β-galactosidase was observed, which seems to occur due to an interplay of negative DEP, electroosmosis, electrokinesis, diffusion, and ion concentration polarization. A detailed study was performed to investigate factors influencing protein DEP under DC conditions, including electroosmosis, electrophoresis, and Joule heating. Specifically, temperature rise within the iDEP device due to Joule heating was measured experimentally with spatial and temporal resolution by employing the thermosensitive dye Rhodamine B. Unlike DNA and cells, protein DEP behavior is not well understood to date. Therefore, this detailed study of protein DEP provides novel information to eventually optimize this protein migration method for pre-concentration, separation, and fractionation.

Contributors

Agent

Created

Date Created
2014

153253-Thumbnail Image.png

Chloroform formation from swimming pool disinfection: a significant source of atmospheric chloroform in Phoenix?

Description

Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are

Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in hot climates such as Phoenix, AZ contain a substantial amount of swimming pools, potentially resulting in significant atmospheric fluxes. In this study, CHCl3 formation potential (FP) from disinfection of swimming pools in Phoenix was investigated through laboratory experiments and annual CHCl3 emission fluxes from swimming pools were estimated based on the experimental data.

Swimming pool water (collected in June 2014 in Phoenix) and model contaminants (Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Compounds (EDCs), artificial sweeteners, and artificial human waste products) were chlorinated in controlled laboratory experiments. The CHCl3 production during chlorination was determined using Gas Chromatography-Mass Spectrometry (GC-MS) following solid-phase microextraction (SPME). Upon chlorination, all swimming pool water samples and contaminants produced measureable amounts of chloroform. Chlorination of swimming pool water produced 0.005-0.134 mol CHCl3/mol C and 0.004-0.062 mol CHCl3/mol Cl2 consumed. Chlorination of model contaminants produced 0.004-0.323 mol CHCl3/mol C and 0.001-0.247 mol CHCl3/mol Cl2 consumed. These numbers are comparable and indicate that the model contaminants react similarly to swimming pool water during chlorination. The CHCl3 flux from swimming pools in Phoenix was estimated at approximately 3.9-4.3 Gg/yr and was found to be largely dependent on water temperature and wind speed while air temperature had little effect. This preliminary estimate is orders of magnitude larger than previous estimates of anthropogenic emissions in Phoenix suggesting that swimming pools might be a significant source of atmospheric CHCl3 locally.

Contributors

Agent

Created

Date Created
2014

153344-Thumbnail Image.png

Mechanistic studies of one-electron reduced bipyridine reactions relevant to carbon dioxide sequestration

Description

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.

Contributors

Agent

Created

Date Created
2015

150925-Thumbnail Image.png

Surface modification of polydimethyl siloxane using polyethylene oxide copolymers

Description

Polydimethyl siloxane is a commonly used fabrication material for microfluidic devices. However, its hydrophobic nature and protein adsorption on the surface restricts its use for microfluidic applications. Also, it is critical to control the electroosmotic flow for electrophoretic and dielectrophoretic

Polydimethyl siloxane is a commonly used fabrication material for microfluidic devices. However, its hydrophobic nature and protein adsorption on the surface restricts its use for microfluidic applications. Also, it is critical to control the electroosmotic flow for electrophoretic and dielectrophoretic manipulations. Therefore, surface modification of PDMS is essential to make it well suited for bioanalytical applications. In this project, the role of polyethylene oxide copolymers F108 and PLL-PEG has been investigated to modify the surface properties of PDMS using physisorption method. Measuring electroosmotic flow and adsorption studies tested the quality and the long-term stability of the modified PDMS surface. Static and dynamic coating strategies were used to modify the PDMS surface. In static coating, the PDMS surface was incubated with the coating agent prior to the measurements. For dynamic coating, the coating agent was always present in the solution throughout the experiment. F108 and PLL-PEG were equally effective to prevent the protein adsorption under both strategies. However, dynamic coating was more time saving. Furthermore, effective reduction of EOF was observed with F108 coating agent under dynamic conditions and with PLL-PEG coating agent under static conditions. Moreover, PLL-PEG dynamic coatings exhibited reversal of EOF. These important findings could be used to manipulate EOF and suggest optimal coating agent and strategies for PDMS surface treatment by the physisorption method.

Contributors

Agent

Created

Date Created
2012

154613-Thumbnail Image.png

DNA nanostructures as programmable biomolecular scaffolds for enzymatic systems

Description

Nature is a master at organizing biomolecules in all intracellular processes, and researchers have conducted extensive research to understand the way enzymes interact with each other through spatial and orientation positioning, substrate channeling, compartmentalization, and more.

DNA nanostructures of high

Nature is a master at organizing biomolecules in all intracellular processes, and researchers have conducted extensive research to understand the way enzymes interact with each other through spatial and orientation positioning, substrate channeling, compartmentalization, and more.

DNA nanostructures of high programmability and complexity provide excellent scaffolds to arrange multiple molecular/macromolecular components at nanometer scale to construct interactive biomolecular complexes and networks. Due to the sequence specificity at different positions of the DNA origami nanostructures, spatially addressable molecular pegboard with a resolution of several nm (less than 10 nm) can be achieved. So far, DNA nanostructures can be used to build nanodevices ranging from in vitro small molecule biosensing to sophisticated in vivo therapeutic drug delivery systems and multi-enzyme networks.

This thesis focuses on how to use DNA nanostructures as programmable biomolecular scaffolds to arranges enzymatic systems. Presented here are a series of studies toward this goal. First, we survey approaches used to generate protein-DNA conjugates and the use of structural DNA nanotechnology to engineer rationally designed nanostructures. Second, novel strategies for positioning enzymes on DNA nanoscaffolds has been developed and optimized, including site-specific/ non site-specific protein-DNA conjugation, purification and characterization. Third, an artificial swinging arm enzyme-DNA complex has been developed to mimic substrate channeling process. Finally, we extended to build a artificial 2D multi-enzyme network.

Contributors

Agent

Created

Date Created
2016

154539-Thumbnail Image.png

Hyphenation of a microfluidic platform with MALDI-TOF mass spectrometry for single cell analysis

Description

Cell heterogeneity is widely present in the biological world and exists even in an isogenic population. Resolving the protein heterogeneity at the single cell level is of enormous biological and clinical relevance. However, single cell protein analysis has proven to

Cell heterogeneity is widely present in the biological world and exists even in an isogenic population. Resolving the protein heterogeneity at the single cell level is of enormous biological and clinical relevance. However, single cell protein analysis has proven to be challenging due to extremely low amount of protein in a single cell and the huge complexity of proteome. This requires appropriate sampling and sensitive detection techniques. Here, a new approach, microfluidics combined with MALDI-TOF mass spectrometry was brought forward, for the analysis of proteins in single cells. The detection sensitivity of peptides as low as 300 molecules and of proteins as low as 10^6 molecules has been demonstrated. Furthermore, an immunoassay was successfully integrated in the microfluidic device for capturing the proteins of interest and further identifying them by subsequent enzymatic digestion. Moreover, an improved microfluidic platform was designed with separate chambers and valves, allowing the absolute quantification by employing iTRAQ tags or an isotopically labeled peptide. The study was further extended to analyze a protein in MCF-7 cell lysate. The approach capable of identifying and quantifying protein molecules in MCF-7 cells is promising for future proteomic studies at the single cell level.

Contributors

Agent

Created

Date Created
2016