Matching Items (2)
Filtering by

Clear all filters

153253-Thumbnail Image.png
Description
Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in

Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in hot climates such as Phoenix, AZ contain a substantial amount of swimming pools, potentially resulting in significant atmospheric fluxes. In this study, CHCl3 formation potential (FP) from disinfection of swimming pools in Phoenix was investigated through laboratory experiments and annual CHCl3 emission fluxes from swimming pools were estimated based on the experimental data.

Swimming pool water (collected in June 2014 in Phoenix) and model contaminants (Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Compounds (EDCs), artificial sweeteners, and artificial human waste products) were chlorinated in controlled laboratory experiments. The CHCl3 production during chlorination was determined using Gas Chromatography-Mass Spectrometry (GC-MS) following solid-phase microextraction (SPME). Upon chlorination, all swimming pool water samples and contaminants produced measureable amounts of chloroform. Chlorination of swimming pool water produced 0.005-0.134 mol CHCl3/mol C and 0.004-0.062 mol CHCl3/mol Cl2 consumed. Chlorination of model contaminants produced 0.004-0.323 mol CHCl3/mol C and 0.001-0.247 mol CHCl3/mol Cl2 consumed. These numbers are comparable and indicate that the model contaminants react similarly to swimming pool water during chlorination. The CHCl3 flux from swimming pools in Phoenix was estimated at approximately 3.9-4.3 Gg/yr and was found to be largely dependent on water temperature and wind speed while air temperature had little effect. This preliminary estimate is orders of magnitude larger than previous estimates of anthropogenic emissions in Phoenix suggesting that swimming pools might be a significant source of atmospheric CHCl3 locally.
ContributorsRose, Christy J (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Hayes, Mark (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2014
150925-Thumbnail Image.png
Description
Polydimethyl siloxane is a commonly used fabrication material for microfluidic devices. However, its hydrophobic nature and protein adsorption on the surface restricts its use for microfluidic applications. Also, it is critical to control the electroosmotic flow for electrophoretic and dielectrophoretic manipulations. Therefore, surface modification of PDMS is essential to make

Polydimethyl siloxane is a commonly used fabrication material for microfluidic devices. However, its hydrophobic nature and protein adsorption on the surface restricts its use for microfluidic applications. Also, it is critical to control the electroosmotic flow for electrophoretic and dielectrophoretic manipulations. Therefore, surface modification of PDMS is essential to make it well suited for bioanalytical applications. In this project, the role of polyethylene oxide copolymers F108 and PLL-PEG has been investigated to modify the surface properties of PDMS using physisorption method. Measuring electroosmotic flow and adsorption studies tested the quality and the long-term stability of the modified PDMS surface. Static and dynamic coating strategies were used to modify the PDMS surface. In static coating, the PDMS surface was incubated with the coating agent prior to the measurements. For dynamic coating, the coating agent was always present in the solution throughout the experiment. F108 and PLL-PEG were equally effective to prevent the protein adsorption under both strategies. However, dynamic coating was more time saving. Furthermore, effective reduction of EOF was observed with F108 coating agent under dynamic conditions and with PLL-PEG coating agent under static conditions. Moreover, PLL-PEG dynamic coatings exhibited reversal of EOF. These important findings could be used to manipulate EOF and suggest optimal coating agent and strategies for PDMS surface treatment by the physisorption method.
ContributorsManchanda, Shikha (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2012