Matching Items (47)
Filtering by

Clear all filters

135432-Thumbnail Image.png
Description
Students Organize for Syria (SOS) is the student led initiative for Syria. With 18 registered chapters across the United States, this student organization is targeting a multidimensional cause by different means. Though it is now a national movement, it started off with one group at Arizona State University, with one

Students Organize for Syria (SOS) is the student led initiative for Syria. With 18 registered chapters across the United States, this student organization is targeting a multidimensional cause by different means. Though it is now a national movement, it started off with one group at Arizona State University, with one student. Zana Alattar, founder and student director of SOS, tells the story of how she took an ASU organization, Save Our Syrian Freedom (SOS Freedom), to the national level as SOS. As a pre-medical student, she also combines her work in human rights with her future in healthcare. After all, health and human rights have long maintained a synergistic relationship.
ContributorsAlattar, Zana (Author) / Graff, Sarah (Thesis director) / McClurg, Sharolyn (Committee member) / School of Molecular Sciences (Contributor) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135440-Thumbnail Image.png
Description
Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function

Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function alleles at transformation loci and an increased mutational load from recombining with DNA from dead cells create additional costs to transformation. These costs have been shown to outweigh many of the benefits of recombination under a variety of likely parameters. We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis, as it relates to bacterial transformation. Here we describe a computational model showing that host-pathogen coevolution may provide a large selective benefit to transformation and allow transforming cells to invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in time, explaining the tight regulation and wide variety of rates observed in naturally competent bacteria. Host-pathogen dynamics may explain the evolution and maintenance of natural competence despite its associated costs.
ContributorsPalmer, Nathan David (Author) / Cartwright, Reed (Thesis director) / Wang, Xuan (Committee member) / Sievert, Chris (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
Human subject research is a sensitive ethical topic in today's society, and with good cause. The history of human subject research is full of tragedy and wrongdoing, which is what has led to the firm restrictions we presently have. At the same time, we also acknowledge the value behind human

Human subject research is a sensitive ethical topic in today's society, and with good cause. The history of human subject research is full of tragedy and wrongdoing, which is what has led to the firm restrictions we presently have. At the same time, we also acknowledge the value behind human subject research and the information science can obtain from such endeavors. This project analyzes this conundrum through a narrative describing a group of scientists who choose to ignore some of the laws and regulations concerning human subject research in order to pursue neurological based research for a "greater good." In the novella, the scientists end up harming several people while performing their illegal research, but are able to obtain successful results. However, the group is eventually caught, and end up having to face the consequences of their actions. The situations and interactions the story presents are meant to juxtapose both sides of the human subject research ethical argument in a unique way in order to allow the reader to critically think through the argument themselves and form their own opinions on the matter.
ContributorsPirotte, Benjamin Daniel (Author) / Finn, Edward (Thesis director) / Cook, Paul (Committee member) / McGregor, Joan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2015-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136532-Thumbnail Image.png
Description
Understanding glycosaminoglycans’ (GAG) interaction with proteins is of growing interest for therapeutic applications. For instance, heparin is a GAG exploited for its ability to inhibit proteases, therefore inducing anticoagulation. For this reason, heparin is extracted in mass quantities from porcine intestine in the pharmaceutical field. Following a contamination in 2008,

Understanding glycosaminoglycans’ (GAG) interaction with proteins is of growing interest for therapeutic applications. For instance, heparin is a GAG exploited for its ability to inhibit proteases, therefore inducing anticoagulation. For this reason, heparin is extracted in mass quantities from porcine intestine in the pharmaceutical field. Following a contamination in 2008, alternative sources for heparin are desired. In response, much research has been invested in the extraction of the naturally occurring polysaccharide, heparosan, from Escherichia coli K5 strain. As heparosan contains the same structural backbone as heparin, modifications can be made to produce heparin or heparin-like molecules from this source. Furthermore, isotopically labeled batches of heparosan can be produced to aid in protein-GAG interaction studies. In this study, a comparative look between extraction and purification methods of heparosan was taken. Fed-batch fermentation of this E. coli strain followed by subsequent purification yielded a final 13C/15N labeled batch of 90mg/L of heparosan which was then N-sulfated. Furthermore, a labeled sulfated disaccharide from this batch was utilized in a protein interaction study with CCL5. With NMR analysis, it was found that this heparin-like molecule interacted with CCL5 when its glucosamine residue was in a β-conformation. This represents an interaction reliant on a specific anomericity of this GAG molecule.
ContributorsHoffman, Kristin Michelle (Author) / Wang, Xu (Thesis director) / Cabirac, Gary (Committee member) / Morgan, Ashli (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135850-Thumbnail Image.png
Description
In this study, we propose and then assess the efficacy of a new approach to static suspension to correct for facial paralysis. Our method involves placing barbed sutures through the superficial muscular aponeurotic system (SMAS) and anchoring them in the temporal fascia parallel to the underlying facial muscles. We first

In this study, we propose and then assess the efficacy of a new approach to static suspension to correct for facial paralysis. Our method involves placing barbed sutures through the superficial muscular aponeurotic system (SMAS) and anchoring them in the temporal fascia parallel to the underlying facial muscles. We first analyzed the ability of this procedure to improve facial symmetry by comparing the degree of asymmetry between the paralyzed and unaffected sides of a patient's face (N=10) prior to and following surgery. Then, to determine if symmetry is improved as a result of placing the sutures parallel to the direction of facial muscle forces, we measured the vectors of levator labii superioris and zygomaticus major in cadaver hemifaces (N=3) and compared them to the angles of the vectors of correction from the patient sample to angles of muscle vectors in three facial hemispheres from cadaver controls. Results indicate that: (1) facial symmetry was significantly improved in these patients and (2) this improvement. We conclude that, compared to existing protocols, our novel surgical method is a better means of static suspension for reconstruction following onset of facial paralysis as it is simple to perform, easy to replicate, able to be post-operatively adjusted in-office, has a good long-term prognosis, and, as we have demonstrated, effectively corrects the appearance of asymmetry by working with the underlying facial anatomy.
ContributorsLeach, Garrison Alecsander (Co-author) / Joganic, Jessica (Co-author) / Hooft, Nicole (Co-author) / Joganic, Edward (Co-author, Committee member) / Foy, Joseph (Thesis director) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136289-Thumbnail Image.png
Description
The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 is used as a receptor for

The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 is used as a receptor for various pathogens such as rhinoviruses, coxsackievirus A21 and the malaria parasite Plasmodium falciparum. ICAM-1 contains five immunoglobulin (Ig) domains in its long N-terminal extracellular region, a hydrophobic transmembrane domain, and a small C-terminal cytoplasmic domain. The Ig domains 1-2 and Ig domains 3-4-5 have been crystallized separately and their structure solved, however the full ICAM-1 structure has not been solved. Because ICAM-1 appears to be important for the mediation of cell-to-cell communication in physiological and pathological conditions, gaining a structural understanding of the full-length membrane anchored ICAM-1 is desirable. In this context, we have transiently expressed a plant-optimized gene encoding human ICAM-1 in Nicotiana benthamiana plants using the MagnICON expression system. The plant produced ICAM-1 is forming aggregates according to previous data. Thus, the current extraction and purification protocols have been altered to include TCEP, a reducing agent. The protein was purified using TALON metal affinity resin and partially characterized using various biochemical techniques. Our results show that there is a reduction in aggregation formation with the use of TCEP.
ContributorsPatel, Heeral (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kannan, Latha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136320-Thumbnail Image.png
Description
Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction.

Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction. Recombinantly expressed BChE, however, tends to be in monomer or dimer oligomeric forms, which are far less stable than the tetramer form of the enzyme. When BChE is transiently expressed in Nicotiana benthamiana, it is produced mainly as monomers and dimers. However, when the protein is expressed through stable transformation, it produces much greater proportions of tetramers. Tetramerization of WT human plasma derived BChE is facilitated by the binding of a proline rich peptide. In this thesis, I investigated if a putative plant-derived analog of the mammalian proline-rich attachment domain caused stably expressed cocaine hydrolase variants of human BChE to undergo tetramerization. I also examined if co-expression of peptides with known proline-rich attachment domains further shifted the monomer-tetramer ratio toward the tetramer.
ContributorsKendle, Robert Player (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Larrimore, Kathy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05